Prediksi Tanin dan Total Padatan Tidak Terlarut Buah Kesemek (Diospyros kaki L.) Menggunakan Spektroskopi NIR
Abstract
Abstract
Determination of tannin and non-soluble solid content of persimmon are usually carried out by a chemical method, these methods are destructive, time-consuming and can not be applied to the development of online grading. The objective of this study was to develop rapid prediction method of tannin and non-soluble solid content of persimmon non-destructively using NIR Spectroscopy. NIR spectra were measured by NIRFlex N-500 fiber optic solid with the wavelength of 1000-2500 nm. For the reference method, tannin and non-soluble solid content were measured using conventional method. Some pre-processing methods were applied, and the results were calibrated to chemical data using principal component regression (PCR) and partial least square (PLS). The best model for prediction of non-soluble solid content was multiplicative scatter correction (MSC) pre-processing and PLS with a correlation coefficient (r), standard error prediction (SEP) and the ratio of standard deviation to SEP (RPD) of 0.83, 1.48% and 1.59 respectively. The best model for predicting tannin was first derivative Savitzky-Golay (dg1) and PLS with r, SEP and RPD of 0.72, 0.14% and 1.06 respectively. PLS method was better than PCR in predicting non-soluble solid content and tannin of persimmon.
Abstrak
Penentuan tanin dan total padatan tidak terlarut buah kesemek biasa dilakukan dengan metode kimia, metode ini bersifat destruktif, memakan waktu dan tidak dapat diterapkan untuk pengembangan grading secara on-line. Tujuan penelitian ini adalah untuk memprediksi secara cepat tanin dan padatan tidak terlarut buah kesemek secara non destruktif menggunakan Spektroskopi NIR. Spektrum NIR diukur dengan NIRFlex N-500 fiber optic solid pada panjang gelombang 1000-2500 nm, Untuk metode referensi, kandungan tannin dan total padatan tidak terlarut diukur dengan menggunakan metode konvensional. Beberapa metode pra-pengolahan data NIR diterapkan, dan hasilnya dikalibrasi dengan data kimia menggunakan metode principal component regression (PCR) dan partial least square (PLS). Model terbaik untuk memprediksi non-soluble solid content adalah menggunakan pra-pengolahan multiplicative scatter correction (MSC) dan PLS dengan r, SEP dan RPD masing - masing 0.83, 1.48%, dan 1.59. Model terbaik untuk memprediksi tanin diperoleh dengan menggunakan turunan pertama Savitzky-Golay (dg1) dan metode PLS dengan r, SEP dan RPD masing - masing 0.72, 0.14% dan 1.06. Metode PLS menghasilkan model kalibrasi lebih baik daripada PCR dalam memprediksi tanin dan non-soluble solid content buah kesemek.
References
Alwala, J.O., F.N. Kiema, W. Wanzala. 2014. Determination of tannin concentration in african indigenous vegetables, grains and cassava
roots from Emuhaya Distric, Western Kenya. American J Nutr Food Sci. Vol 1 (1):1-8.
Andasuryani, Y.A. Purwanto, I.W. Budiastra, K. Syamsu. 2014. Prediksi kandungan katekin gambir (Uncaria gambir Roxb) dengan spektroskopi NIR. Jurnal Teknologi Industri Pertanian. Vol 24 (1): 43-52.
Blanco, M., I. Villarroya. 2002. NIR Spectroscopy: a rapid-response analytical tool. Trends Anal Chem. Vol 21: 240-250.
Cen, H., Y. He. 2007. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trend Food Sci Technol. (18):72-83.
Chen, H., Q. Song, G. Tang, Q. Feng, L. Lin. 2013. The combined optimization of Savitzky-Golay smoothing and multiplicative scatter correction for FT-NIR PLS models. ISRN Spectro : 1-9.
He, Y., Y. Zhang, G.A. Pereira, A.H. Gomez, J. Wang. 2005. Nondestructive Determination of Tomato Fruit Quality Characteristics Using Vis/ NIR Spectroscopy Technique. International Journal of Information Technology. Vol 11 (11):97-108.
Ismarani. 2012. Potensi senyawa tanin dalam menunjang produksi ramah lingkungan. Jurnal Agribisnis dan Pengembangan Wilayah. Vol 3. No.2.
Kusumiyati, T. Akinaga, S. Yonemori, S. Kawasaki, S. Tanabe. 2008. On-tree and after-harvesting evaluation of firmness, color and lycopene
content of tomato fruit using portable NIR Spectroscopy. Journal of Food, Agriculture dan Environment. Vol 6 (2): 327-332.
Liu, Y., X. Chen, X. Sun, Y. Yin. 2007. Nondestructive measurement of pear internal quality indices by visible and near-infrared spectrometric
techniques. New Zealand Journal of Agricultural Research. Vol 50: 1051-1057.
Munawar, A.A. 2014. Multivariate Analysis and Artificial Neural Network Approaches of Near Infrared Spectroscopic Data for Non- Destructive Quality Attributes Prediction of Mango. (Disertasi). Georg-August University. Goettingen.
Novita, D.D., U. Ahmad, Sutrisno, I.W. Budiastra. 2011. Penentuan Pola Peningkatan Kekerasan Kulit Buah Manggis Selama Penyimpanan
Dingin Dengan Metode NIR Spectroscopy. Jurnal Keteknikan Pertanian. Vol 25 (1): 59-67.
Osborne, B.G., T. Fearn, P.H. Hindle. 1993. Partical NIR Spectroscopy with applications in food and beverage analysis. Ed ke-2. Longman Scientific
Technical, New York.
Suhandy, D., R. Hartanto, S. Prabawati, Yulianingsih, Yatmin. 2008. Penggunaan Near Infrared Spectroscopy Pada Penentuan Kandungan
Padatan Terlarut Buah Mangga Indramayu Secara Tidak Merusak. Jurnal Keteknikan Pertanian. Vol 22 (2): 129-134.
Schmilovitch, Z., A. Mizrach, A. Hoffman, H. Egozi, Y. Fuchs. 2000. Determination of mango physiological indices by near-infrared
spectrometry. Postharvest Biology and Technology. Vol 19 : 245–252.
Shayo, N. 1988. Analysis of protein & tannin contents in sorghum using Near Infrared reflectance spectroscopy. (Tesis). Food Science Program,
University of Saskatoon. Saskatoon.
Sari, H.P., Y.A. Purwanto, I.W. Budiastra. 2016. Pendugaan Kandungan Kimia Mangga Gedong Gincu Menggunakan Spektroskopi Inframerah
Dekat. AGRITECH. Vol 36 (3): 294-301.
Verheij, E.W.M., R.E. Coronel. 1992. Edible fruits and nuts. Plant Resources of South East Asia (PROSEA). Vol 2: 191-195.
William, P. and K. Norris. 1990. Near infrared technology in the agricultural and food industries. St. Paul. (USA): American Association of Cereal
Chemiist, Inc.
Zanamwe, P. 2014. Prediction of postharvest quality of ‘Triumph’ persimmon fruit using NIR Spectroscopy. (Tesis). Faculty of Agrisciences,
Stellenbosch University. Stellenboch
Zhang, P, Li, J.K., X.J. Meng, P. Zhang, X. Feng, B.G. Wang. 2011. Research on nondestructive measurement of soluble tannin content of
astringent persimmon using visible and near infrared diffuse reflection spectroscopy. Spectroscopy and Spectral Analysis. Vol 31 (4): 951-954.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.