Main Article Content



The potential use of UV-Visible spectroscopy along with DPLS (discriminant partial least squares) method has been evaluated to discriminate authenticity of luwak coffee. In this study, UV-Visible spectral data of adulterated and unadulterated luwak coffee samples were obtained within 190-700 nm spectral region. DPLS model were then developed using original spectra to distinguish between adulterated and unadulterated luwak coffee samples. The predictions using developed DPLS model resulted in 100% of correct classification rate for adulterated and unadulterated luwak coffee, respectively. Our results showed that UV-Visible spectroscopy data with DPLS method can be applied to rapid detecting luwak coffee adulteration with other cheaper non-luwak coffees. This technology may be applied to protect and promote luwak coffee as one of Indonesian coffee specialty.


Potensi penggunaan spektroskopi ultraviolet-cahaya tampak dan metode DPLS (discriminant partial least squares) dievaluasi untuk digunakan dalam proses diskriminasi kopi luwak. Pada penelitian ini data spektra untraviolet-cahaya tampak kopi luwak asli dan kopi luwak yang dicampur kopi arabika (kopi luwak campuran) diambil pada panjang gelombang 190-700 nm. Model DPLS dibangun menggunakan spektra asli untuk membedakan antara kopi luwak asli dan kopi luwak campuran. Hasil prediksi menggunakan model DPLS menghasilkan ketepatan klasifikasi sebesar 100% untuk kopi luwak asli dan kopi luwak campuran. Hasil riset ini menunjukkan spektroskopi ultraviolet-cahaya tampak dan metode DPLS dapat digunakan sebagai salah satu metode cepat untuk mendeteksi adanya pemalsuan kopi luwak yang harganya mahal menggunakan kopi bukan luwak yang harganya lebih murah. Teknologi ini dapat diterapkan untuk melindungi sekaligus mengenalkan kopi luwak sebagai salah satu kopi specialty Indonesia.


DPLS method luwak coffee discrimination chemometrics UV-Visible spectroscopy

Article Details


  1. Berrueta, L.A., R.M.A. Salces, dan K. Héberger. 2007. Supervised pattern recognition in food analysis. Journal of Chromatography A, Vol. 1158: 196–214.
  2. Chen, Q., Z. Guo, J. Zhao dan Q. Ouyang. 2012. Comparisons of different regressions tools in measurement of antioxidant activity in green tea using near infrared spectroscopy. Journal of Pharmaceutical and Biomedical Analysis Vol. 60:92−97.
  3. Howell, G. 2013. Appreciating quality: The Route to upward mobility of coffee farmers, in Thurston, R.W., J. Morris dan S. Steiman (Ed.).
  4. Coffee a Comprehensive Guide to the Bean, the Beverage, and the Industry. Rowman & Littlefield. Maryland. p 99-101.
  5. Jumhawan, U., S.P. Putri, Yusianto, E. Marwani, T. Bamba, dan E. Fukusaki. 2013. Selection of discriminant markers for authentication of Asian palm, J. Agric. Food Chem. Vol. 61: 7944–8001.
  6. Kemsley, E. K., S. Ruault dan R.H. Wilson. 1995. Discrimination between coffea arabica and coffea canephora variant robusta beans using infrared spectroscopy. Food Chemistry, Vol. 54: 321–326.
  7. Lorenzo, C., T. Garde-Cerdán, M. A. Pedroza, G. L. Alonso dan M. R. Salinas. 2009. Determination of fermentative volatile compounds in aged
  8. red wines by near infrared spectroscopy. Food Research International, Vol. 42:1281–1286.
  9. Malley, D. F., L. Yesmin dan R. G. Eilers. 2002. Rapid analysis of hog manure and manureamended soils using near infrared spectroscopy.
  10. Soil Science Society of America Journal, Vol. 66:1677–1686.
  11. Mantanus, J., E. Ziémons, P. Lebrun, E. Rozet, R. Klinkenberg, B. Streel, B. Evrard dan Ph. Hubert. 2010. Active content determination of non-coated pharmaceutical pellets by near infrared spectroscopy: Method development, validation and reliability evaluation. Talanta Vol. 80: 1750−1757.
  12. Marcone, M. F. 2004. Composition and properties of Indonesian palm civet coffee (Kopi Luwak) and Ethiopian civet coffee. Food Research International Vol. 37: 901−912.
  13. Roggo, Y., L. Duponchel, dan J.P. Huvenne. 2003. Comparison of supervised pattern recognition methods with McNemar’s statistical
  14. test application to qualitative analysis of sugar beet by near-infrared spectroscopy. Analytica Chimica Acta, Vol. 477: 187–200.
  15. Souto, U.T.C.P., M. F. Barbosa, H.V. Dantas, A.S. Pontes, W.S. Lyra, P.H.G.D. Diniz, M.C.U. Araújo, dan E.C. Silva. 2015. Identification of adulteration in ground roasted coffees using UV–Vis spectroscopy and SPA-LDA. LWT - Food Science and Technology, Vol. 63(2): 1037–1041.
  16. Steiman, S. 2013. What is specialty coffee? in Thurston, R.W., J. Morris dan S. Steiman (Ed.). Coffee a Comprehensive Guide to the Bean, the Beverage, and the Industry. Rowman & Littlefield. Maryland. p 102-105.
  17. Suhandy, D., M. Yulia, Y. Ogawa dan N. Kondo. 2012. L-ascorbic acid prediction in aqueous solution based on FTIR-ATR terahertz spectroscopy.
  18. Engineering in Agriculture, Environment and Food, Vol. 5(4): 152–158.
  19. Suhandy, D., S. Waluyo, C. Sugianti, M. Yulia, R. Iriani, F.N. Handayani, dan N. Apratiwi. 2016. The use of UV-Vis-NIR spectroscopy and chemometrics for identification of adulteration in ground roasted arabica coffees -investigation on the influence of particle size on spectral analysis-. Prosiding Seminar Nasional Tempe, Bandar Lampung, Mei 28, 2016.
  20. Williams, P. dan D. Sobering. 1996. How do we do it: a brief summary of the methods we use in developing near infrared calibrations, in Davies, A. M. C. dan P. Williams (Ed.). Near Infrared Spectroscopy: The Future Waves. NIR Publications, Chichester. p 185–188.