Main Article Content

Abstract

Abstract

Grains cooling by aeration system usually reduces the rate of insects and fungi population growth and preserves grain quality. An aeration system may perform inefficently if the grain moisture or temperatures exeeds the safe thresholds. Good design of aeration systems is essential for efficient cooling. In this study, Computational Fluid Dynamics (CFD) approach was used to describe the performance of the aeration system on paddy storage in the silos. CFD is a computer software program to predict and quantitatively analyze fluid flow, heat transfer, transport phenomena, and chemical reactions in a system with one or more boundary condition. CFD analysis result can be used to represent the aeration system on paddy storage in the silos with a fairly high-level validation. The average value of error during four hours aeration is ranges from 3.6% - 5:47%. The statistically result showed that tend to be not significantly different between the measurement results and CFD analysis.

Abstrak

Pendinginan biji-bijian dengan aerasi digunakan untuk mengurangi laju pertumbuhan populasi serangga dan jamur serta mempertahankan kualitas bijian. Sebuah sistem aerasi dapat tidak efisien jika kelembaban bijian atau suhu melebihi batas aman. Desain yang baik pada sistem aerasi merupakan hal yang sangat dasar untuk efisiensi pendinginan. Pada penelitian ini, dilakukan pendekatan Computational Fluid Dynamics (CFD) untuk menggambarkan performansi sistem aerasi pada penyimpanan gabah didalam silo. CFD merupakan program perangkat lunak komputer untuk memprediksi dan menganalisis secara kuantitatif aliran fluida, perpindahan panas, transpor penomena dan reaksi kimia pada suatu sistem dengan satu atau lebih kondisi batas. Hasil penelitian menunjukkan analisis CFD dapat mereprensentasikan system aerasi pada penyimpanan gabah dalam silo dengan tingkat validasi yang cukup tinggi. Rata-rata nilai error selama empat jam aerasi berkisar 3.6 % - 5.47 %. Secara statistik menunjukkan hasil yang cenderung tidak berbeda nyata antara hasil pengukuran dengan analisis CFD.


Keywords

CFD aeration cooling silos paddy

Article Details

Author Biographies

Reniana Reniana, Universitas Papua.

Jurusan Teknologi Pertanian, Fakultas Teknologi Pertanian

Nursigit Bintoro, Universitas Gadjah Mada

Jurusan Teknik Pertanian, Fakultas Teknologi Pertanian

Joko Nugroho, Universitas Gadjah Mada

Jurusan Teknik Pertanian, Fakultas Teknologi Pertanian

References

  1. Al Kindi, H., Y. A. Purwanto., dan D. Wulandani. 2015. Analisis CFD Aliran Udara Panas pada Pengering Tipe Rak dengan Sumber Energi Gas Buang. JTEP Jurnal Keteknikan PertanianVol. 3, No.1, April 2015.
  2. Bintoro, N. 2008. Rekayasa Metode Aerasi Pada Penyimpanan Jagung Secara Curah Dalam Silo. Prosiding Seminar Nasianal Teknik Pertanian 2008 – Yogyakarta, 18-19 November 2008. Bhardwaj, S., dan R. Sharma. 2015. Review : Recent Advances in on-farm Paddy Storage. International Journal of Farm Science 5(2):265- 272, 2015.
  3. Chidanand, D.V., dan Shanmugasundaram S. 2016. A Study on Storage Temperature of Paddy in Metal Silos. International Jurnal of Agricultural Science and Research (IJASR) Vol.6, Issue 2, April 2016, 73-78.
  4. Fansuri A. 2013. Pendekatan CFD untuk Optimasi Keseragaman Aliran Udara pada Pengering Gabah Tipe Bak. (Skripsi). Departemen Teknik Mesin dan Biosistem Fakultas Teknologi Pertanian Institut Pertanian Bogor. Bogor
  5. Hung B.N, A. Nuntaphan, dan T. Kiatsiriroat,. 2009. Integration of Desiccant Tray Unit with Internal Cooling for Aeration of Paddy Silo in Humid Tropical Climate. Research Paper: Postharvest Technology. Biosystems Engineering 102 (2009) 75–82.
  6. Hung, B. N., A. Nuntaphan, and T. Kiatsiriroat. 2008. Aeration simulation of stored paddy by integrating desiccant tray unit into grain ventilation system. Mj. Int. J. Sci. Tech. 2008, 1(Special Issue), 7-16. ISSN 19057873.
  7. Incopera, P. Frank, Dewitt dan P. David. 1990. Fundamental of Heat and Mass Tranfer. Third Edition. New York : John Wiley and Sons.
  8. Jian F., Jayas D. S., dan White N. D.G,. 2009. Temperature Fluctuations and Moisture Migration in Wheat Stored for 15 Months in a Metal Silo in Canada. Journal of Stored Products Research 45 (2009) 82–90.
  9. Khatchatourian O.A. dan D.L. Savicki,. 2004. Mathematical Modelling of Airflow in an Aerated Soya Bean Store Under Non-uniform Conditions. Biosystems Engineering (2004) 88(2), 201–211.
  10. Lazzari, F.A, S.M.N. Lazzari,., dan F.N. Lazzari,. 2006. Artificial Cooling to Control Coleopterans in Paddy Rice Stored in Metallic Silo. 9th International Working Conference on Stored Product Protection. Alternative Methods to Chemical Control. PS7-32 – 6292.
  11. Lee, C.H, dan D.S. Cung. 1995. Grain Physical and Thermal Properties Related to Drying and Aeration, Grain Drying in Asia. Proceeding of an International Confrence Helt at the FAO Regional Office for Asia and the Pasific. Bangkok. Thailand, 17-20 Oktober 1995. ACIAR.
  12. Lopes D. de. C., J.H. Martins., A. F. L. Filho., E. de. C. Melo, P. M. de. B. Monteiro, dan D. M. de. Queiroz,. 2008. Aeration Strategy for Controlling Grain Storage Based on Simulation and on Real Data Acquisition. Computers and Electronics in Agriculture 63 (2008) 140–146.
  13. Nurba, D. 2008. Analisis Distribusi Suhu, Aliran Udara, RH dan Kadar Air dalam In-Store Dryer (ISD) untuk Biji Jagung. (Tesis). Sekolah Pasca Sarjana. Intitut Pertanian Bogor.
  14. Proctor, D. L. 1994. Grain storage techniques: Evolution and Trends in Developing Countries. Food and Agriculture Organization of the United Nations (FAO) Roma. ISBN 92-5-1 03456-7.
  15. Sawant, A. A., S. C. Patil, S. Kalse, dan B. N. J. Thakor 2012. Effect of Temperature, Relative Humidity and Moisture Content on Germination Percentage of Wheat Stored in Different Storage Structures. Agric Eng Int: CIGR Journal. Vol. 14, No. 2. Tuakia, F. 2008. Dasar-Dasar CFD Menggunakan Fluent. Informatika. Bandung.
  16. Varnamkhasti M.G., H. Mobli, A. Jafari, S. Rafiee, M. Heidarysoltanabadi, and K. Kheiralipour. 2007. Some Engineering Properties of Paddy (var. Sazandegi). International Journal of Agriculture & Biology 1560–8530/2007/09–5–763–766.
  17. Versteeg, H.K. dan W. Malalasekera. 1995. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Longman Scientific and Technical:New York.