Impact of Land Use Change to Dependable Flow in Kuncir River, Nganjuk District, East Java
Abstract
Abstract
Currently, Kuncir River is a source of irrigation water in the southern of Nganjuk District. The potential of
Kuncir River was assessed by measuring the dependable flow as an indicator of water supply for irrigated
areas. The objective of this study was to estimate the river discharge and its dependable flow for irrigation
from Kuncir River in Nganjuk District. River discharge data was collected from Kuncir River, rainfall data was
collected from Nganjuk District, East Java and climate data was collected from climatology station of Badan
Meteorologi Klimatologi dan Geofisika (BMKG) Sawahan, Nganjuk. There were two major steps on this
study which were model development and model simulation using SWAT after calibration and validation.
Model simulation showed NS value of 0.67 with mean daily flow of 7.15 m3 s-1. Based on land use change
scenario, the conversion of 50% on forest and 50% on range-grasses into agriculture land could increase
3.1% and 2.5% of average river discharge, respectively.
Abstrak
Sungai Kuncir merupakan sumber air irigasi di bagian selatan Kabupaten Nganjuk. Potensi Sungai
Kuncir dapat dikaji melalui perhitungan debit andalan untuk dijadikan indikator jumlah pemenuhan air di
daerah irigasi. Penelitian ini bertujuan menduga debit air sungai dan menghitung besar debit andalan
untuk irigasi pada Sungai Kuncir, Kabupaten Nganjuk. Data debit sungai dikumpulkan langsung di Sungai
Kuncir, data hujan dikumpulkan dari Dinas PU dan Pengairan Kabupaten Nganjuk, Jawa Timur, dan data
iklim dikumpulkan dari stasiun kimatologi Badan Meteorologi Klimatologi dan Geofisika (BMKG) Sawahan,
Nganjuk. Penelitian dilakukan melalui dua tahap, yaitu proses pembangunan model dan proses simulasi
dengan SWAT setelah melalui proses kalibrasi dan validasi. Simulasi model memiliki nilai NS sebesar 0.67
dan debit rata-rata harian sebesar 7.15 m3 s-1. Skenario perubahan lahan menggambarkan konversi 50%
lahan hutan dan 50% semak belukar menjadi lahan pertanian berpotensi meningkatkan nilai debit rata-rata
Sungai Kuncir masing-masing sebesar 3.1% dan 2.5%.
References
calibration and validation of SWAT in a snowdominated
rocky mountain watershed. Journal
of the American Water Resources Association.
44(6):1411.
Arnold JG, Srinivasan R, Muttiah RS, Williams
JR. 1998. Large Area Hydrologic Model and
Assessment Part I: Model Development. Journal
of the American Water Resources Association.
34(1):73-89.
Ferijal T. 2012. Prediksi hasil limpasan permukaan
dan laju erosi dari subDAS Krueng Jreu
menggunakan model SWAT. Jurnal Agrisa.
16(1):29-38.
Fiseha BM, Setegn SG, Melesse AM, Volpi E, Fiori
A. 2012. Hydrological analysis of the upper Tiber
River basin, Central Italy: a watershed modelling
approach. Hydrological Processes. doi: 10.1002/
hyp.9234.
Indarto A, Juwono PT, Rispiningtati. 2012. Kajian
potensi Sungai Srinjing untuk Pembangkit
Listrik Tenaga Mikrohidro (PLTMH) Brumbung
di Kabupaten Kediri. Jurnal Teknik Pengairan.
3(2):174-184.
Indra Z. 2012. Analisis debit Sungai Munte dengan
metode Mock dan metode NRECA untuk
kebutuhan Pembangkit Listrik Tenaga Air. Jurnal
Sipil Statik. 1(1):34-38.
Liyantono, Kato T, Kuroda H, Yoshida K. 2013. GIS
analysis of conjunctive water resource use in
Nganjuk District, East Java, Indonesia. Barker
R (Editor). Paddy and Water Environment. ISSN
1611-2490. doi: 10.1007/s10333-011-0304-0.
Muchtar A, Abdullah N. 2007. Analisis faktor-faktor
yang mempengaruh debit Sungai Mamasa.
Jurnal Hutan dan Masyarakat. 2(1):174-187.
Mohamoud YM. 2008. Prediction of daily flow
duration curves and streamflow for ungauged
catchments using regional flow duration curves.
Journal Hydrological Sciences. 53(4):706-724.
Moriasi DN, Arnold JG, Van Liew MW, Bingner RL,
Harmel RD, Veith TL. 2007. Model evaluation
guidelines for systematic quantification of
accuracy in watershed simulations. American
Society of Agricultural and Biological Engineers.
50(3):885-900.
[NJIT] New Jersey Institute of Technology. 2010.
SWAT modelling analysis for the Neshanic River
Watershed [Internet]. [downloaded 2013 Dec 1].
Available at: http://ims.njit.edu/neshanic/docs/
plan/AppFSWATModelingReport.pdf.
Pereira MVF, Oliveira GC, Costa CCG, Kelman
J. 1984. Stochastic Streamflow Models for
Hydroelectric Systems. Water Resources
Research. 20: 379-390.
Santhi CA, Arnold JG, Williams JR, Dugas WA,
Srinivasan R, Houck LM. 2001. Validation of
SWAT model on a larger river basin with point
and non point sources. Journal of the American
Water Resources Association. 37(5):1169-1188.
Sauquet E, and Catalogne C. 2011. Comparison of
catchment grouping methods for flow duration
curve estimation at ungauged sites in France.
Hydrology and Earth System Sciences. 15:2421-
2435. doi:10.5194/hess-15-2421-2011.
Srinivasan R, Ramanarayanan TS, Arnold JG,
Bednarz ST. 1998. Large Area Hydrologic
Model and Assessment Part II: Model Aplication.
Journal of the American Water Resources
Association. 34(1):91-101.
Wei W, Chen LD, Fu BJ, Huang ZL, Wu DP, Gui
LD. 2007. The effect of land uses and rainfall
regimes on runoff and soil erosion in the semiarid
loess hilly area, China. Journal of Hydrology.
335: 247–25.
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.