Aplikasi Model Artificial Neural Network Terintegrasi dengan Geographycal Information System untuk Evaluasi Kesesuaian Lahan Perkebunan Kakao
Abstract
Land evaluation for specific purpose in plantation sector become very important due to increasing the competition in land use and the development of plantation sector. Land evaluation produces information of land economic values for specific land use. The objective of the research is to develop land evaluation method for cocoa estate using integrated model Artificial Neural Network (ANN) and Geographical Information System (GIS). Back propagation ANN model were used to predict cocoa yield base on land qualities parameter. The result shows that the best of ANN model to predict cocoa yield have 15 input layer, 15 hidden layer, and 1 output layer. with the determination coefficient (r2) of 0.99 and Root Mean Square Error (RMSE) of 93.83 in the training process, otherwise in the testing found the r2of O. 76 and RMSE of 113.83. In verification stage the integrated model ofANN and GIS was used to evaluate land suitability of Wijayaarga Cocoa Plantation is seem accurate in predicting cocoa yield and easers to mapping the land suitability unit.
Keyword: ANN, GIS, Land Evaluation, Cocoa
Diterima: 04 Juni 2007; Disetujui: 18 September 2007
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors submitting manuscripts should understand and agree that copyright of manuscripts of the article shall be assigned/transferred to Jurnal Keteknikan Pertanian. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA) where Authors and Readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.