ANALISIS STRUKTUR BOX GIRDER JEMBATAN FLY OVER RAWA BUAYA SISI BARAT TERHADAP GEMPA
Abstract
The Rawabuaya flyover bridge is an option to overcome the traffic jam that often happens in the Rawabuaya area. It has an extremely vital function to disentangle the traffic congestion; therefore, the structure must be strong in holding the on-going load, specifically the seismic load. The seismic load is dangerous to a structure because it has period that causes the structure to repeatedly shaken. If the movements happened continually, the structure will collapse ― depending on how much earthquake load that is being loaded on the structure. Therefore, it is essential to conduct a structural analysis on the earthquake resistance level of the Rawabuaya flyover bridge based on the "Standar Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non-Gedung" RSNI 03-1726-2010 and "Peta Zonasi Gempa Indonesia 2010" to know further about the on-going deformation. This research was done thoroughly by recognizing the maximum forces in the combination of ultimate loads based on the most recent rules of encumbering, including the rules regarding the seismic load. The maximum forces in the combination of ultimate loads were compared with the forces' nominal values, especially those related to the seismic load. From the research, it was concluded that the values of the maximum forces in the combination of ultimate loads had the combined seismic load worked on the upper structure of box girder as well as on the structure beneath the pier of Rawabuaya flyover bridge with a maximum moment values of 800300.80 KNm applied to Pier P6B with the combination of the singular ultimate load, additional dead load, pre-stressed load, and “T” truck load. Impairment to the structure was found to happen if the combination of the ultimate load was forced to work continuously on the Rawabuaya flyover bridge. Meanwhile, the result of the compared maximum forces in the combination of ultimate load with the values of nominal forces indicated that the Rawabuaya flyover bridge had a large amount of seismic load with 10% difference. It meant that this structure was able to resist 90% of ultimate seismic load, which required the usage of reinforcements on the upper structure of box girder as well as on the structure beneath the pier to increase the concrete stress power and the tendon on the upper structure of box girder to increase the tensile of the concrete.
Keywords: prestressed box girder, structural analysis, seismic load, force
Downloads
Authors who publish with Jurnal Teknik Sipil dan Lingkungan, JSIL agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).