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ABSTRACT  

The extent of coastal rice paddy agricultural land is vulnerable to land use and land cover (LULC) 

changes to non-agricultural uses due to land degradation, one of which is caused by salinity. This 

study aims to detect and project LULC changes up to 2031, particularly in coastal rice paddy areas 

affected by salinity, by comparing LULC in 2017, 2019, and 2021. Sentinel-2 Imagery is used for LULC 

classification, with recordings selected during the generative phase of rice growth to obtain the most 

optimal rice paddy area. There are six LULC classifications: water, wetland, low-medium-high 

vegetation cover, and built-up area. To understand the impact of salinity on crops, several 

vegetation indices (VIs) such as NDVI, SAVI, EVI, and ARVI are used. The LULC changes classified 

according to VIs are compared with the MOLUSCE plugin based on artificial neural network-

multilayer perceptron (ANN-MLP) and Cellular Automata (CA). The comparison of VIs results shows 

that NDVI is better at describing LULC changes due to the influence of salinity, with a kappa value of 

0.63 and a Correctness of 72.565. The LULC projection using CA in all VIs indicates that wetland areas 

are more likely to convert into water bodies, suggesting that high salinity land tends to be 

unproductive for rice paddies, making it prone to conversion. 

Introduction 

Rice fields along the northern coast of Java are experiencing degradation due to various factors such as soil 
salinity, erosion, and changes in land use [1]. Salinization in coastal paddy fields is driven by topography, 
climate, parent material of soil, groundwater level, irrigation and drainage conditions, and intrusion of 
saltwater into the soil as primary factors [2]. These factors contribute to the formation of soil salinization and 
the migration of water and salt under unsuitable conditions, which negatively impacts crop productivity. The 
high soil salinity levels in the area, particularly closest to the beach, result in higher sea intrusion [3]. 
Additionally, changes in climate, such as sea level rise, contribute to salinization of agricultural land near the 
coast [4]. In addition to these primary factors, secondary factors such as population density and human 
activity also play a role in the development of soil salinization [5]. Land Use Land Cover (LULC) change, 
including an increase in settlement areas and a decrease in forest areas, has also had a negative impact on 
irrigation water supply [6]. Land conversion is another driving force, as the conversion of paddy fields to other 
uses reduces the availability of suitable land for rice production [7,8]. Salinization can lead to the 
transformation of different land covers, with saline land having relationships mainly with croplands, 
grasslands, and water bodies [9]. 

Remote sensing data of different spatial, temporal, and spectral resolutions obtained from various platforms 
can be used to monitor the growth and development of crops. Sentinel-2 satellite imagery can be used to 
monitor the growth phase of rice. Multispectral remote sensing data, including vegetation indices (VIs) and 
specific salinity indicators derived from Sentinel-2 imagery, are effective in detecting and monitoring soil 
salinity in rice cultivation fields [10]. The Normalized Difference Vegetation Index (NDVI) value, obtained from 
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Sentinel-2 imagery, correlates strongly with different stages of rice growth, enabling the rapid identification 
of growth phases [11]. NDVI has been identified as the most precise index for estimating these phases [12]. 
Using NDVI values calculated from Sentinel-2 data, paddies affected and unaffected by salinity can be 
differentiated, with lower NDVI values indicating impaired rice growth [13]. This study utilized Sentinel-2 
imagery data to develop a model that estimates the salinity of river water and found that the reflectance of 
visible bands correlated with Electrical Conductivity (EC), facilitating the monitoring of saline intrusion [14]. 
Sentinel-2 can also be used to monitor rice-growing conditions over time and identify different patterns of 
vegetation growth related to soil salinity. This study provides a method for detecting salt-affected soils in 
irrigated systems [15]. 

The spatiotemporal changes in the vegetation indices (VIs) from the past to the present, indicating obstacles 
to plant growth, are likely influenced by plant salinity factors [16,17]. This can serve as a foundation for 
predicting the impact of salinity on rice paddy agricultural land in the future [18]. The MOLUSCE (Modules 
for Land Use Change Evaluation) simulation model can assist in understanding the transition from past to 
present changes, determining the transition probability, and generating future predictions based on detected 
transition patterns. This study aimed to detect and project changes in LULC spatially and temporally, 
particularly in detecting the potential impact of salinity from projected changes in coastal rice paddy 
agricultural land. Sentinel-2 satellite imagery data from 2017, 2019, and 2021 were used in this analysis. The 
potential impact of salinity on rice paddy fields was identified by comparing VIs such as NDVI, EVI (Enhanced 
Vegetation Index), ARVI (Atmospherically Resistant Vegetation Index), and SAVI (Soil Adjusted Vegetation 
Index). A Cellular Automata (CA) model based on MOLUSCE was used as a tool to project future LULC changes 
up to 2031. Land use and land cover transitions are determined by primary factors driving salinity, such as 
topography, EC, rivers, and river network density. Additionally, secondary salinity factors mainly influenced 
by human activities, such as roads, economic centers, and built-up areas, were considered. 

Materials and Methods 

Study Area 

The research site is in the agricultural coastal region of Demak Regency (Figure 1), geographically situated 
between 6°43'26" and 7°09'43"S, and 110°27'58" and 110°48'47"E. The coastal morphology consists of fluvio-
marine plains with slope gradients ranging from to 0 to 8% and elevations between –1 and 10 meter above 
sea level (masl). This region frequently experiences tidal flooding and coastal erosion due to tidal pattern 
changes, which are attributed to its lower elevation relative to the sea level and flat terrain. Annual rainfall 
in Demak averages between 2,000 to 2,500 mm per year. Predominant land use includes rice paddy 
cultivation, followed by residential areas, industries, fishponds, plantations, and dryland regions. 

 

Figure 1. Area Study in Agriculture Coastal Area of Demak Regency. 
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Data Collection and Preparation 

The data source used in the study (Table 1) is the Rupa Bumi Indonesia (RBI) or Topographic Map of Indonesia 
(TMI) provided by the Geospatial Information Agency (GIA), with a scale of 1: 25,000 to obtain information 
on administrative boundaries, rivers, contours, and land-use layers. Elevation data were detailed using point 
data from Google to obtain more precise elevation within a 1-meter interval range compared to RBI data with 
a 12.5-meter interval. Field testing was conducted by collecting soil and water samples for EC parameters 
through stratified random sampling based on differences in land use and land cover, irr igation channels, 
rivers, and fishponds. For paddy field polygons, the 2015 Basic Rice Field Map from the Center for Agricultural 
Data and Information Systems of the Ministry of Agriculture was used. 

Table 1. Research data and data sources. 

Data Acquired information Providers 

RBI Map of Demak Regency, Scale 1: 25.000 Geospatial data (River, administrative, LULC) RBI/GIA 
Elevation  Point elevation Google 
Sentinel-2A/B in 2017, 2019 and 2021 VIs (NDVI, EVI, SAVI, ARVI), LULC Google 

Electric Conductivity (EC) EC Field survey 

paddy field polygons The boundaries and area of the rice fields. Ministry of Agriculture 

Selection of The Training Area 

Sentinel-2 imagery offers high-resolution spatial and temporal data, which is valuable for various 
environmental monitoring and research applications. Sentinel-2 allows for the detailed observation and 
analysis of land cover, vegetation health, and water bodies. The spatial resolution varies across different 
bands: 10 meters for the blue (Band 2), green (Band 3), red (Band 4), and near-infrared (NIR, Band 8). 
Furthermore, Sentinel-2 provides a temporal resolution of every five days, ensuring frequent and consistent 
data collection at the same location. 

Sentinel-2 image data products were obtained from the Google Earth Engine (GEE) platform between 
December 2017 and December 2021. The initial stage of image preparation was performed in two stages: 
geometric correction and radiometric correction. Geometric correction ensures that the spatial positioning 
of each pixel in the image accurately represents its true location on Earth's surface. This is particularly 
important for time-series analysis because it allows for accurate comparison of images over time. The GEE 
platform typically handles geometric corrections automatically, leveraging the internal metadata of Sentinel-
2 images that contain precise geolocation information. The second step, radiometric correction, can be 
expressed with the formula: 

Reflectance corrected = Quantification Value × DN/Solar Irradiance  (1) 

where DN is the digital number from the satellite image, and the quantification value is a calibration 
coefficient provided by Sentinel-2. This correction ensures that the reflectance values accurately represent 
Earth's surface features. 

The planting pattern in Demak Regency was twice a year. However, in this study, the image recording period 
was chosen to be from April to June with a maximum cloud cover of 30%. In addition, the generative phase 
was chosen for all three administrative regions; thus, there was a time adjustment, particularly for the 
Wedung District area. For the Sayung and Bonang Districts, image recording in May was chosen, whereas for 
the Wedung District, image recording in June was chosen (Table 2). 

Table 2. Growth phase conditions of rice recorded by Sentinel-2 for the three administrative regions. 

District 

2017 2019 2021 

Apr May Jun Apr May Jun Apr May Jun 

    19-May 28-Jun     19-May 28-Jun     19-May 28-Jun 

Sayung                                     
Bonang                                     
Wedung                                     

 

Notes: Paddy Phase  Nursery  Vegetative   Generative  Fallow.  
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Criteria for Land Use and Land Cover 

The land use classification obtained from the GIA was further updated through manual interpretation based 
on Google Earth imagery for 2017, 2019, and 2021. The classification of land use/land cover was divided into 
six categories: (1) water bodies, including rivers and fish ponds; (2) wetlands, including open land 
experiencing flooding fluctuations; (3) areas with low vegetation cover, including shrubs and grass, and the 
seedling phase of rice; (4) areas with medium vegetation cover, including irrigated and non-irrigated rice 
fields in the vegetative phase; (5) areas with high vegetation cover, including irrigated and non-irrigated rice 
fields in the generative phase; and (6) built-up areas, including settlements, buildings, roads, and industrial 
areas. Several appearances of the different phases of rice growth are presented in Figure 2. 

 

(a)                                                 (b)                                                            (c) 

Figure 2. Field conditions at different stages of rice development: (a) nursery stage, (b) vegetative stage, and (c) fallow 

stage. In image (b), differences in rice growth levels can be observed. 

Criteria for Vegetation Land Cover by Vegetation Indices (VIs) 

The analysis of land cover, particularly in rice paddy fields, through Sentinel-2 involves various VIs such as 
NDVI, EVI, SAVI, and ARVI (Table 3). These indices are crucial for assessing the health of vegetation by 
measuring different aspects of plant growth and condition[19,20]. A high NDVI value typically indicates 
healthy, dense vegetation, whereas lower values may suggest stressed or sparse vegetation, potentially 
signaling land degradation [21]. EVI, on the other hand, is designed to optimize the vegetation signal in high-
biomass regions and improve sensitivity in dense vegetation conditions. It corrects for some of the distortions 
in the reflected light caused by particles in the air as well as the ground cover below the vegetation. The SAVI 
was designed to minimize the influence of soil brightness, especially in areas with sparse vegetation. ARVI 
further improves the NDVI by reducing atmospheric effects. 

Table 3. Indirect indicators of salinity using Various VIs. 

Index Name Description Equation 

NDVI Normalized Difference Vegetation Index  (NIR-R)/(NIR+R) (2) 
EVI Enhanced Vegetation Index  2.5(NIR-R)/(NIR+6xR-7.5xB+1) (3) 
SAVI Soil Adjusted Vegetation Index  [(NIR-R)/(NIR+R+L)](1+L) (4) 
ARVI Atmospherically Resistant Vegetation Index  [(NIR-(2xR-B)]/[(NIR+(2xR-Blue)] (5) 

Notes: NIR represents the near-infrared band (band 8: wavelength 842 nm), R represents the red band (band 4: wavelength 665 nm), and B represents the 

blue band (band 2: wavelength 490 nm) of Sentinel-2 imagery, L is the soil brightness correction factor, which is commonly set to 0.5. 

VIs values were classified into different vegetation stages using the K-means clustering algorithm. This 
unsupervised classification method partitions VIs data into K clusters, where K represents a predefined 
number of clusters. Each data point was iteratively assigned to one of these k clusters based on the mean VIs 
values of the clusters. The aim is to minimize the variance within each cluster, while maximizing the variance 
between clusters. As a result, distinct groups of VIs values were formed, corresponding to the different stages 
of paddy growth. 

Field Survey 

Soil salinization can be identified by measuring the apparent electrical conductivity (ECa) of the soil [22]. 
Similarly, the salinity of water can be determined by measuring its electrical conductivity (ECw) [23]. By 
analyzing the range of ECa and ECw values, it is possible to identify areas with high salinity levels, which 
indicate salinization [24]. Field testing was conducted in 2021 on 115 water and soil samples (Figure 3) using 
a stratified random sampling method for each land use and land cover class. Testing and sample area 
observations were carried out on grids of 100 × 100 m, compositionally representing a 10 × 10-pixel size of 
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Sentinel-2A/B imagery. The soil EC values were measured using a Hanna HI 98331 Growline Direct Soil 
Conductivity meter and the water EC values were measured using an Eutech multiparameter water tester. 
The soil EC values were measured at the root depth of rice plants, which were approximately 0 to 20 cm and 
20 to 40 cm deep. Water EC values were measured directly. 

 

Figure 3. The distribution of the field samples was determined using stratified random sampling within the rice paddy 

polygons established by Center for Agricultural Data and Information Systems of the Ministry of Agriculture. The 

sampling grid was set to 100 × 100 m. 

Driving Factors 

The driving factors of land use and land cover change due to the influence of salinity include the salinity map, 
topographic map, river density map, distance to the river map, distance to the market map, and distance to 
built-up area map (Table 4). The Salinity and topography were obtained through kriging interpolation using 
the QGIS software. The flow density map was obtained using the drainage density plugin in QGIS based on 
the river layer and a buffer area of 100 m. Euclidean Distance spatial analysis was used to determine the river 
density map, distance to the river map, distance to the market map, and distance to the built -up area map. 

Table 4. Factors driving LULC change influenced by salinity. 

Factors Sources Analysis 

Salinity EC – field survey Interpolation krigging  
Topography DEM Google point elevation (1 m) Interpolation krigging 
River density Line of river and DEM Geoprocessing tools 
Distance from the river Line of river, RBI Euclidean distance 
Distance from the road Line of road, RBI Euclidean distance 
Distance from the market Point of market, RBI- field survey Euclidean distance 
Distance from the building Area of building, RBI- interpretation Euclidean distance 

Prediction of LU/LC Change  

Land use and land cover changes were predicted using the MOLUSCE plugin from the QGIS 2.18 software.  
This plugin can measure the area of change and predict future LULC using the Artificial Neural Network (ANN) 
method from CA and Multi-Layer Perceptron (MLP). The formulation of CA is a discrete dynamic system in 
which the state of each cell at time t + 1 is determined by the state of its neighboring cells at time, according 
to predefined transition rules. As a method with temporal-spatial dynamics, CA can simulate the evolution of 
phenomena in two dimensions. CA applies a contiguity filter to 'expand' classifications from historical times 
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to later periods. MOLUSCE involves six key phases: data input, correlation analysis, area change calculation, 
potential transition modelling, CA simulation, and validation. Initially, land use and cover data for 2017 and 
2019 were input, with each VIs method operating independently. The correlation analysis then examined the 
factors influencing LULC changes using the Pearson correlation coefficient, removing any factor with a 
correlation greater than 0.8 to prevent multicollinearity.  

Each VIs method uses the same factors. The area change of LULC was calculated by comparing the 
classifications from 2017 and 2019, with each LULC result running its model. Projections using the MLP 
algorithm of the ANN estimate the transition potentials with specific settings for neighborhood size, learning 
rate, maximum iterations, hidden layer size, and momentum. The ANN module outputs maps that show the 
transition potentials, certainty functions, and simulation outcomes. Changes in LULC for 2021 were simulated 
using 2017 and 2019 data through the CA algorithm. These predictions were validated against actual 2021 
LULC data to verify the model accuracy, employing kappa statistics to assess the precision of the simulation 
maps. Finally, the number of iterations was adjusted to accommodate a 2-year interval difference, ultimately 
aiming for a projection that spans 10 years to generate LULC predictions for 2031. 

Results and Discussion 

Driving Force 

The results of the Pearson correlation matrix for the driving factors can be either positive or negative. A 
positive correlation indicates a linear relationship, where LULC changes coincide with the driving factors, 
whereas a negative correlation suggests that LULC changes will remain as they were originally. The 
correlation analysis between the driving factors for LULC changes due to salinity is presented in Table 5.  

Table 5. Pearson correlation results for driving factors. 

Driving factors 
Dist. 
market 

Dist. 
building 

Dist. 
road 

Dist. 
river 

Topographic 
(krigging) 

River 
density 

Salinity 
(krigging) 

Dist. market (X1)  0.2088 0.3112 0.1922 –0.5093 0.1448 0.3023 
Dist. building (X2)   0.4366 –0.0453 –0.49 0.2674 –0.0208 
Dist. road (X3)    0.6387 –0.3104 –0.1221 –0.0594 
Dist. river (X4)     –0.0001 –0.4998 –0.1262 
Topographic (krigging) (X5)      –0.4131 –0.1933 
River density (X6)       0.0727 
Salinity (krigging) (X7)        

Salinity is closely related to the EC values (X7). The EC range in coastal paddy field areas varies and is 
influenced by several factors. Field test results directly obtained EC values ranging from 2.17 to 4.0 mS/cm 
(maximum reading value of the device) while laboratory results using the method (ECa) 1:5 obtained a range 
of 0.15 mS/cm to 1.78 mS/cm. High soil EC was classified with values > 4.0 mS/cm. The amount of fertilizer 
used affects EC, with interviews with farmers indicating that fields with intensive fertilization have higher EC 
values than those with less fertilization. High clay content in the subsoil layers of the colluvium and young 
alluvial plains resulted in higher EC values. EC measurements at soil depths greater than 20 cm also showed 
high EC values. Overall, the EC range in coastal paddy field areas was influenced by factors such as fertilizer 
use, measurement depth, spatial variability, and salt accumulation. Water EC is directly measured in drainage 
flows and rivers. The EC values ranged from 1 to 17.5 mS/cm. High EC values were found near the coastal 
boundary areas of shrimp ponds and the surrounding agricultural drainage channels. The results for the 
primary driving factors of salinity are presented in Figure 4, and the secondary driving factors of salinity are 
shown in Figure 5. Distance to rivers (X4) is one of the variables used in constructing a salinity model, where 
coastal conditions are very close to the river, indicating a high potential for salinization [25].  

The spatial and temporal variability of salinity in coastal delta regions affects subsurface layers and 
groundwater content, thus becoming a driving factor for salinization [26]. Additionally, the dynamics of 
estuarine flows impact salinization in aquifers, especially in those with low permeability, compared to high-
permeability aquifers. The connection between salinity and topography (X5) is closely associated with 
processes that cause intrusion and waterlogging on farmlands. Coastal regions characterized by LULC, such 
as ponds, dunes, barrier islands, and compact drainage systems, are pivotal in the processes of over wash 
and salinization [27]. Elevations at the study location range from –1.24 masl to 10.52 masl. There is a negative 
correlation between topographic factors and all other driving factors, suggesting that the potential for land 
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changes in low-lying or sub-sea level areas often remains unchanged because these areas are typically used 
for shrimp farming or suffer from seawater flooding. Furthermore, shifts in land use, such as transforming 
agricultural fields into aquaculture zones, also contribute to the risk of salinity intrusion in coastal regions 
[28]. Additionally, topography affects the surface qualities of soil and the dynamics of groundwater, which in 
turn influences the patterns of soil salinization [29]. Prolonged land reclamation in coastal tidal areas can 
reduce the indicators of soil salinity and improve the accumulation of soil nutrients [30]. 

 
       (a)                  (b)       (c)        (d) 

Figure 4. Primary Driving Force to Salinity: (a) Distance to The River (X4); (b) Topography (X5); (c) Drainage Density 

(X6); (d) Electric Conductivity EC) (X7). 

 
(a) (b)                 (c) 

Figure 5. Secondary Driving Force to Salinity: (a) Distance from the Road (X3); (b) Distance from the Market (X1); (c) 

Distance from the Building (X2). 

A high drainage density (X6) plays a significant role in the salinization process, as saline surface water 
infiltrates the aquifer system [31]. However, the relationship between drainage density and salinization effect 
occurs through a complex process influenced by various factors, such as irrigation conditions, groundwater 
salinity, seawater intrusion, climate change, and plant growth. Seawater intrusion/irrigation can threaten 
biodiversity and crop yields, whereas the leaching of salts from affected areas can increase soil salinity [32].  

The secondary factor of distance to the market (X1) positively correlated with the distance to buildings (X2) 
and the distance to roads (X3). This indicates the relationship between secondary factors and LULC changes, 
particularly for built-up land use. The relationship between primary and secondary factors driving LULC 
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changes is shown by a strong positive correlation between the distance to roads (X3) and the distance to 
rivers (X4), suggesting that areas near infrastructure also tend to be near water sources, potentially 
supporting the use of land for rice fields. However, a negative correlation between the distance to rivers (X4) 
and river density (X6) suggests that the farther from the river, the lower the river density, which may indicate 
a reduced water availability for rice field irrigation. 

Transition Matrix of VIs 

From the data, we can see the comparison of area extents among VIs (NDVI, EVI, SAVI, and ARVI) from 2017 
to 2019 for various parameters, such as water, wetland, low density, moderate density, high density, and 
building (Table 6). Each index shows different changes for each parameter. For the water parameter, the ARVI 
index shows the most significant change with an increase of 21.51 km², followed by EVI with an increase of 
10.55 km², whereas NDVI only has a slight increase of 0.91 km². For the wetland parameter, ARVI also shows 
a significant change with an increase of 13.73 km², followed by SAVI with an increase of 11.05 km². 

Table 6. Comparison of area extents among VIs for the Years 2017 and 2019. 

ID LULC 

NDVI EVI SAVI ARVI 

2017 (km2) 2019 (km2) ∆ (km2) 2017 (km2) 2019 (km2) ∆ (km2) 2017 (km2) 2019 (km2) ∆ (km2) 
2017 
(km2) 

2019 
(km2) 

∆ 
(km2) 

1 water 43.09 44 0.91 65.41 75.97 10.55 65.11 73.62 8.51 36.6 57.51 21.51 

2 wetland 34.86 42.27 7.41 39.11 47.96 8.85 36.29 47.34 11.05 31.29 45.02 13.73 
3 low density 30.54 42.13 11.59 39.93 40.64 0.71 40.46 38.36 –2.1 33.77 37.2 3.43 
4 moderat density 49.13 52.98 3.85 95.01 66.89 –28.11 99.26 70.01 –29.25 78.21 47.31 –30.9 

5 high density 187.97 154.45 –33.52 106.16 104.05 –2.11 104.49 106.17 1.68 165.72 147.85 –17.8 

6 building 57.51 67.26 9.75 57.49 67.61 10.11 57.49 67.61 10.11 57.51 67.61 10.09 

For the low-density parameter, the largest change occurred in NDVI with an increase of 11.59 km², while SAVI 
showed a decrease of 2.1 km². The EVI index showed a small positive change of 0.71 km². For the moderate 
density parameter, EVI showed the largest change with a decrease of 28.11 km², followed by SAVI with a 
decrease of 29.25 km². The ARVI experienced the most significant decrease of 30.9 km². From this analysis, 
it is evident that the ARVI index provides significant changes in several parameters, especially water and 
wetland, whereas EVI and SAVI show more significant changes in other parameters, such as moderate 
density. The transition matrix analysis for each VIs (Table 7) and spatially illustrated in Figure 6, shows that 
ID 1 (water) maintained high stability across all VIs from 2017 to 2019. In the NDVI transition matrix, 85% of 
the water area remained as water, whereas 15% of the wetland area changed to water. In the EVI transition 
matrix, the water stability was higher with a value of 92%, with 27% of the wetland area changing to water. 
The SAVI transition matrix showed water stability at 90%, with 31% of the wetland area changing to water. 
The ARVI transition matrix showed water stability at 84%, with 50% of the wetland area changing to water. 

Table 7. MOLUSCE transition matrix results for each VIs. 

 Transition Matrix 

2019 

ID 1 2 3 4 5 6 

2017 

1 0.85 0.13 0.01 0.00 0.00 0.00 
2 0.15 0.61 0.13 0.02 0.01 0.09 
3 0.04 0.26 0.41 0.11 0.05 0.13 
4 0.01 0.06 0.16 0.30 0.44 0.03 
5 0.00 0.02 0.09 0.18 0.70 0.00 
6 0.00 0.00 0.00 0.00 0.00 1.00 

(a) NDVI 

 Transition Matrix 

2019 

ID 1 2 3 4 5 6 

2017 

1 0.92 0.06 0.00 0.00 0.00 0.01 
2 0.27 0.43 0.07 0.04 0.06 0.13 
3 0.06 0.26 0.27 0.17 0.16 0.07 
4 0.02 0.08 0.15 0.33 0.42 0.01 
5 0.01 0.09 0.12 0.26 0.52 0.01 
6 0.00 0.00 0.00 0.00 0.00 1.00 

(b) EVI 

 Transition Matrix 

2019 

ID 1 2 3 4 5 6 

2017 

1 0.90 0.07 0.01 0.00 0.00 0.02 
2 0.31 0.44 0.07 0.02 0.01 0.14 
3 0.05 0.25 0.24 0.25 0.15 0.06 
4 0.01 0.08 0.14 0.33 0.42 0.01 
5 0.01 0.08 0.11 0.25 0.55 0.00 
6 0.00 0.00 0.00 0.00 0.00 1.00 

(c) SAVI 

 Transition Matrix 

2019 

ID 1 2 3 4 5 6 

2017 

1 0.84 0.05 0.01 0.00 0.00 0.09 
2 0.50 0.30 0.07 0.02 0.02 0.09 
3 0.18 0.36 0.19 0.10 0.12 0.05 
4 0.04 0.11 0.14 0.21 0.49 0.02 
5 0.02 0.08 0.11 0.16 0.63 0.00 
6 0.00 0.00 0.00 0.00 0.00 1.00 

(d) ARVI 

Definition: (1) water; (2) wetland; (3) Low Density (4) Moderat Density (5) High Density (6) Building/Settlement. 
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Figure 6. MOLUSCE testing results for each vegetation index (VIs), Definition: (1) water, (2) wetlands, (3) low density, 

(4) moderate density, (5) high density, and (6) building/settlement. 
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Additionally, transitions from water to other categories such as low density, moderate density, high density, 
and buildings are very small or zero across all VIs, indicating that water areas tend not to change to these 
categories. The smallest transition value recorded from water to other categories was 0.00 in all transition 
matrices, reinforcing the stability of the water area. This indicates that water is the most stable category and 
the least likely to change compared to the other categories during the analyzed period. The EVI and ARVI 
indices showed significant changes from wetland to water, while NDVI and SAVI showed smaller changes.  

Validation the Model of LULC NDVI  

The MOLUSCE test results for each VIs (NDVI, EVI, SAVI, and ARVI) show various parameters that can be 
analyzed to determine the most effective VIs (Table 8). Based on the results, NDVI consistently performs the 
best across most parameters, including Δ Overall Accuracy (–0.00075), Min Validation Overall Error (0.04539), 
% Correctness (72.565%), Kappa (overall) (0.63617), Kappa (histo) (0.9545), and Kappa (loc)  (0.66649). SAVI 
also showed strong performance in the Current Validation Kappa parameter (0.65653) and had the same 
minimum validation overall error as NDVI. Consequently, NDVI can be considered the best VIs based on the 
MOLUSCE test results, followed by SAVI. 

Table 8. Results of the MOLUSCE for each tested VIs. 

Parameter NDVI EVI SAVI ARVI 

∆ Overall Accuracy –0.00075 –0.00182 –0.00065 –0.00043 
Min Validation Overall Error 0.04539 0.05205 0.04529 0.04915 
Current Validation Kappa 0.63345 0.57919 0.65653 0.6226 
% Correctness 72.565 62.24 64.4195 60.367 
Kappa (overall) 0.63617 0.53662 0.55549 0.478 
Kappa (histo) 0.9545 0.83397 0.90521 0.8382 
Kappa (loc) 0.66649 0.6434 0.61366 0.5711 

Validation the Model of LULC NDVI 

The model results were tested from 115 points using the purposive sampling method using desktop 
observation on-screen with Google Earth and field tests in 2021. A comparison of the NDVI model results and 
field measurements showed that the overall accuracy for various parameters varied. The water parameter 
had the highest user accuracy (98%) and producer accuracy (97%), with a kappa coefficient of 0.98, indicating 
a very high reliability. Meanwhile, low-density vegetation had a lower accuracy, with a user accuracy of 70%, 
producer accuracy of 60%, and kappa coefficient of 0.65. Moderate-density vegetation showed similar 
results, while high-density vegetation and wetlands had higher accuracies, with user and producer accuracies 
of approximately 85% and 80%, respectively. 

LULC NDVI Changes (2017, 2019, 2021) and Projection (2031) 

The simulation modeling of LULC area changes using MOLUSCE from 2017 to 2031 (Figure 7 and Table 9) 
reveals significant variations across different LULC categories. The "Water" category shows a slight increase, 
growing from 43.10 km² in 2017 to 44.01 km² in 2031. Similarly, the "Wetland" category demonstrates a 
notable increase, expanding from 34.86 km² in 2017 to 42.28 km² in 2031. This suggests a trend toward more 
water-covered and wetland areas over the 14-year period, potentially due to environmental changes or 
human activities that favor these types of land cover. 

In addition to changes in water and wetland areas, the "Low density vegetation" category also experiences 
significant growth. It increased from 30.54 km² in 2017 to 42.14 km² in 2031, indicating an increase in areas 
with sparse vegetation. Meanwhile, "Moderate Density Vegetation" shows a more modest increase from 
49.14 km² in 2017 to 52.99 km² in 2031. These increases may be attributed to shifts in agricultural practices, 
land management strategies, and natural vegetation regrowth. However, the "High Density Vegetation" 
category, which includes densely forested or heavily vegetated areas, sees a decrease from 187.98 km² in 
2017 to 154.46 km² in 2031. This decline highlights the potential loss of dense vegetation areas, possibly 
owing to land conversion or environmental stressors. 

The influence of driving factors such as salinity plays a crucial role in these LULC changes, particularly in the 
"water" and "wetland" categories. Field observations show that rice fields, when flooded by either seawater 
intrusion or heavy rainfall, are often converted into fishponds or left submerged. This transformation was a 
key factor in the observed increase in water and wetland areas. The results of the LULC change projection 
simulation up to 2031 offer a long-term view of the potential LULC changes. 
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(a)     (b)  

Figure 7. Comparison between (a) NDVI 2021 and (b) NDVI 2031 models, Definition; (1) water, (2) wetland, (3) low 

density, (4) moderate density, (5) high density, (6) building/settlement. 

Table 9. The LULC NDVI for the Year 2017, 2019, 2021 and LULC NDVI Projection for the Year 2031. 

ID Land use 
2017 2019 2021 2031* ∆ (km2) 

Year 2017–2031 km2 

1 Water 43.10 44.01 44.73 44.01 0.91 

2 Wetland 34.86 42.28 36.99 42.28 7.41 

3 Low density vegetation 30.54 42.14 38.13 42.14 11.60 

4 Moderate density vegetation  49.14 52.99 45.25 52.99 3.85 

5 High density vegetation 187.98 154.46 170.76 154.46 –33.52 

6 Build area 57.52 67.27 67.27 67.27 9.75 

Conclusions 

This indicates that LULC changes, particularly in paddy agricultural land in the coastal areas of Demak 
Regency, are influenced by salinity. This can be determined by comparing historical Sentinel LULC data from 
2017 and 2019 in detail with the VIs classification (NDVI, EVI, SAVI, and ARVI). The Pearson correlation results 
showed that the primary salinity driving factors were distance to the river and topography. Secondary factor 
variables are influenced by the distance to the road. The ANN-MLP projection of each VIs was then classified 
into six LULC classifications, namely water, wetland, low-density, moderate-density, high-density, and 
building, showing a decrease around moderate-to-high-density vegetation land cover classification to non-
agricultural LULC (water, wetland, building, or low-density vegetation areas). The reliability of LULC 
projections for each VIs uses MOLUSCE based on CA. NDVI can be considered as the best VIs based on the 
MOLUSCE test results. The LULC model validation results of NDVI showed that the parameters of water, high-
density vegetation, and wetlands had high accuracy. The low-density vegetation had the lowest accuracy. 
The projection until 2031 showed a slight increase in the water classification LULC and a significant increase 
in wetland classification. Among the vegetation classifications, a significant decrease was observed in high-
density vegetation classification. 
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