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ABSTRACT 

Rice plays an essential role in ensuring the food security of Indonesia. Hence, rice (paddy) field 

monitoring using synthetic aperture radar (SAR) satellite data is critical, particularly in tropical 

regions. This study presents a new algorithm to detect paddy fields in Subang, West Java, using 

Sentinel-1 SAR with a 12-day revisit acquisition. Three temporal phenological features of paddy 

growth were used, namely, the minimum and maximum backscatter, as well as their differences. 

Paddy fields were discriminated from other land covers using a simple thresholding algorithm based 

on their specific pattern of low minimum, high maximum, and high difference of vertical transmit-

horizontal receive polarization (VH) backscatter on a 2-dimensional (2D) scatter plot. The results 

showed that the proposed algorithm had an accuracy of 94.02%, comparable to that of the random 

forest algorithm and other studies using 3-dimensional (3D) parameters. The proposed algorithm 

reduces the dimensionality from 3D to 2D and is practical for mapping and monitoring paddy fields. 

In this context, the application of the algorithm to the surrounding regions of Karawang, Indramayu, 

and Bekasi achieved high accuracy rates of 93.37%, 92.87%, and 88.13%, respectively. 

Introduction 

Rice is essential for maintaining Indonesia's food security. Hence, the Indonesian government has established 
policies outlined in Law No. 41 of 2009 to preserve sustainable agricultural land and fields [1,2]. Rapid 
mapping and monitoring of paddy fields are essential to protect existing agricultural land from land 
conversion. Remote sensing approaches that capture Earth’s surface characteristics in spectral, spatial, and 
temporal terms can be used to classify paddy fields and their changes [3]. This can be achieved by using 
optical or synthetic aperture radar (SAR) sensors. However, optical sensors are unsuitable for tropical areas 
because of atmospheric conditions, particularly during the rainy season [4]. SAR sensors produce cloud-free 
data owing to their ability to penetrate the atmosphere, smoke, and haze [5]. Therefore, the use of SAR 
satellite data for various land applications is essential in tropical areas, particularly Indonesia.  

Studies of remote sensing data for paddy field classification have evolved from low-to high-resolution optical 
and SAR satellites, such as low-resolution [6,7], medium-resolution [8–11], and high-resolution data [12,13]. 
Dong and Xiao [3] classified paddy fields into three generations based on the literatures ranging from the 
1980s to 2015. In the first generation, paddy fields were mapped using reflectance data and image statistics-
based approaches. In the second generation, mapping and improvement were performed using vegetation 
indices and statistics-based methods. In the third generation, paddy fields were identified using vegetation 
indices and temporal analysis of the SAR backscatter. Recent developments have begun using paddy 
phenological growth through remote sensing detection as a key growth approach. Polarimetric information 
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from remote-sensing SAR images provides excellent sensitivity for identifying crop phenological stages 
[14,15]. An approach using multiple medium-resolution SAR images during the growth stages has been used 
to classify paddy fields [16,17]. Park proposed a 1-dimensional (1D) paddy field mapping index (PMI) during 
flooding and harvesting using the normalized difference of the vertical transmit-horizontal receive 
polarization (VH) backscatter. Furthermore, the three-dimensional (3D) phenological features of time-series 
SAR images are related to growth phenology [17]. Their study included minimum, maximum, and variance 
backscatter data for a certain period of the paddy life cycle. The 3D phenological features represent complete 
paddy growth phenologies; flooding, growing, and dynamic changes. On the other hand, the 1D PMI also 
represents the backscatter dynamics, which was similar to the variance backscatter feature. Therefore, 
changing the variance with the PMI simplifies the input, because the PMI feature is calculated from two other 
features.    

The present study classified paddy fields using SAR Sentinel-1 remote sensing data based on a simple 
thresholding algorithm by combining 1D and 3D phenological features and simplifying them into a 2-
dimensional (2D) scatterplot. Three temporal characteristics of paddy growth were examined: flooding 
phenology (minimum backscatter parameter), phenology during the growing and harvesting stages 
(maximum backscatter parameter), and dynamic land cover change (difference between maximum and 
minimum parameters). The minimum and maximum backscatter were replaced by 10% and 90% quantiles, 
respectively, to eliminate extreme values [18,19]. Therefore, this study aims to obtain a simple and practical 
algorithm to classify paddy fields with high accuracy that can be implemented in a larger area to support 
paddy field mapping and monitoring. 

Methods 

Study Area 

The study area is located in the Subang region of West Java, Indonesia (Figure 1). Subang covers an area of 
2,051.76 km2 and experiences 100 rainy days per year with an average of 2,352 mm year-1. The topographical 
areas range from flat in the north to mountainous regions in the south. The altitude varies from 0 to 1,500 m 
above sea level, and more than 80% of the area has a gentle slope of less than 17°. Furthermore, the primary 
land use in the area is agriculture, specifically in paddy fields [20]. Technically irrigated paddy fields were 
cultivated 2–3 times per year in the northern area. The central and southern parts of the study area had 
different slopes. Most paddy fields are located in rain-fed and simple-irrigated systems. The paddy field 
parcels in the central and southern parts were smaller than those in the northern part [21]. 

 

Figure 1. Study area. 

Data Set 

This study used Sentinel-1A descending data in the Level 1 Ground Range Detected (GRD) product with 
Interferometric Wide (IW) swath mode. Sentinel-1A has a spatial resolution of 10 × 10 m and C-band with a 
nominal wavelength of 5.6 cm [22]. Temporal data were collected from October 2017 to March 2018 during 
the initial planting period. This dataset comprises 16 acquisitions at 12-day intervals. The use of data from 
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the first planting period was better than that of the annual data [18]. This study used VH polarization as the 
most suitable method for detecting and monitoring paddy growth [23]. 

The training sample data were constructed using systematic random sampling [24]. Sample data were 
collected at points regularly spaced 500 m apart, followed by the creation of circles with a radius of 25 m. 
The land cover types for each circular polygon were determined by visual analysis of high-resolution images 
from Satellite Pour l’Observation de la Terre (SPOT) 6/7 and Pleiades in 2018. Only samples in the form of 
homogeneous paddy fields were used, and polygons with mixed land cover were avoided. Field surveys were 
conducted in circular polygons, particularly for uncertain land-cover types. The analysis was performed using 
the open-source software Quantum GIS (QGIS). A total of 10,838 points were used as samples, of which 4,138 
and 6,700 points were paddy and non-paddy fields, respectively. 

Processing Flow Diagram 

The processing flow starts with the pre-processing of the remote sensing data. The task involved single 
acquisition of data and temporal filter processing, followed by the application of phenology extraction to 
produce three parameters. The final process involves classification and analysis, as shown in Figure 2. 

 

Figure 2. Processing flow diagram. 

Pre-processing and Phenology Extraction 

During the pre-processing step, the European Space Agency (ESA) Sentinel-1 toolbox was applied to the 
Google Earth Engine (GEE) to apply orbital files, remove thermal noise and GRD boundary noise, radiometric 
calibration to sigma nought backscatter (dB), and range-Doppler terrain correction [25,26]. The next step was 
to transform the data from sigma to gamma and apply terrain correction [27]. Subsequently, the gamma-
nought backscatter images were resampled to 20 × 20 m and cropped to Subang's area of interest (AOI), 
followed by stacking the data from October 2017 to March 2018. The resulting image was saved as a single 
image file comprising 15 layers. 

Temporal filtering enhances or smoothens temporal data series to obtain meaningful information. In this 
study, temporal filtering was performed by obtaining the median of three consecutive images. From the 15-
stacked images, there was a sequence of layers from 1 to 15. Layer 2 was filtered with medians 1, 2, and 3, 
while layer 3 was filtered with medians 2, 3, and 4. Specifically, layer 1 was filtered with means 1 and 2, 
whereas layer 15 was filtered with means 14 and 15, because the median of the two images equals the mean. 
In addition, three phenological parameters of paddy growth were extracted: (1) the flooding stage before 
transplanting, (2) the growing and harvesting stages, and (3) the dynamic land cover from the flooding to 
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harvesting stage. A temporal transformation was applied to extract the backscatter series as a phenological 
parameter. Similar approaches have been used with an optical sensor for other purposes, such as the 
Landsat-8 cloud-free mosaic, using a statistical-based approach [19]. The spatial-domain Lee filtering 
algorithm was selected for noise removal, with a radius of three pixels and one number of looks processed 
using the open-source Orfeo Tool Box (OTB) software [28]. In this context, noise removal was applied to the 
three phenology parameters instead of the 15 original backscatters to reduce space and computational time. 

Training Sample and Accuracy Assessment 

Furthermore, the training samples were divided into training and testing sets. The classification model was 
developed using the training set, and the product accuracy was calculated using the test set. Subsequently, 
the classification of paddy fields using the proposed method was compared with the classification of random 
forest (RF) machine learning to analyze the advantages of the proposed algorithm. The comparison was also 
observed with previous algorithms for the PMI and 3-phenology parameters using the same classification 
method of RF and the same sample for consistency comparison. Accuracy assessment was performed using 
the K-fold cross-validation approach, which showed an accuracy bias [29]. The available samples were 
randomly divided into four segments and three were consolidated, constituting 75% of the samples for model 
training. The remaining segment (25%) was used for model validation, and the assessment was performed 
using metrics such as the overall accuracy, precision, recall, F1-score, and kappa [30]. The Sorensen similarity 
index was used to evaluate classification results [31]. 

Classification Using 2D Scatter Plots 

The classification model in this study was developed using a two-dimensional (2D) scatterplot of three 
phenological growth features. The three features are the minimum and maximum backscatter and their 
difference, which is the updated PMI. Previous PMI parameters were based on normalized differences. 
However, this study adopted maximum and minimum backscatter differences to be plotted in a 2D 
scatterplot. A thresholding method was used to classify each pixel, labeled paddy or non-paddy, according to 
phenological conditions, using the following equation: 

X < Tx, and Y > Ty and Z > Tz (1) 

where: 

X = Minimum backscatter, Y = Maximum backscatter, Z = Maximum − Minimum backscatter 

Tx = a threshold for X, Ty = a threshold for Y, and Tz = a threshold for Z 

The area was classified into paddy fields based on an algorithm during a given period, when the area was 
initially covered with water (X < Tx) and then covered with vegetation and bare land (Y > Ty). The change in 
the backscatter was sufficient to show the conversion from water to vegetation or bare land (Z > Tz). The 
threshold was determined using an iterative process to maximize overall accuracy. In this context, the 
iteration was terminated when the overall accuracy was optimal. 

Results and Discussion 

2D Scatterplot of Paddy Growth Phenological Parameters 

Figure 3 shows the phenological parameters of the paddy growth during the period starting from October 
2017 to March 2018. The black color in the minimum backscatter image indicates the flooding phase, 
including permanent water, which is also black (Figure 3a). The brightest color in the maximum backscatter 
image indicates the area covered by permanent plantations or bare land. A less bright color indicates paddy 
fields during the vegetative and reproductive stages (Figure 3b). The bright color in the difference between 
the maximum and minimum backscatter images indicates a land cover change (Figure 3c). 

The paddy fields were classified based on three phenological parameters according to the following rules: 
low minimum backscatter (flooding phase), high maximum backscatter (vegetative and reproductive stages), 
and high change in delta backscatter. The initial threshold for classifying paddy fields was based on three 
phenological parameters, calculated using a 1D VH backscatter frequency histogram. The initial thresholds 
for Tx, Tz, and Ty were –18.5 dB, 5.90 dB, and –14.5 dB, plotted in a 2D scatterplot between the minimum 
and maximum backscatters as shown in the X-axis and Y-axis, respectively (Figure 4). Tx is a vertical line 
separating the X-axis and Ty is a horizontal line separating the Y-axis. Tz is a diagonal line separating high 
backscatter changes. 
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Figure 3. Phenological parameters of paddy growth from October 2017 to March 2018: (a) minimum VH backscatter 

parameter; (b) maximum VH backscatter parameter; and (c) difference between the maximum and minimum VH 

backscatter parameters. 

 

Figure 4. 2D paddy field scatterplot pattern between the minimum and maximum backscatter parameters and their 

possible classes. 

Seven regions (classes) are bounded by Tx, Ty, and Tz, as shown in Figure 4. The area inside the green box 
refers to class 1, which was labeled based on a low minimum, high maximum, and high change to represent 
paddy fields. The remaining areas were described as non-paddy fields. Classes 2 and 3 showed low minimum 
and maximum values, and the backscatter was stable during this period. The potential land cover classes for 
numbers two and three included permanent water or fishponds. Classes 4 and 5 showed high minimum 
values, suggesting areas that were consistently unflooded and maintained vegetated or bare soil land cover. 
The potential land-cover types for these classes include plantations, forests, permanent bare soil, and 
settlements. Furthermore, Class 6 was related to paddy fields with slight variations. In this context, no pixels 
were labeled as having either low or high maximum values. The thresholds were recalculated using an 
iterative process to optimize the accuracy. The iteration process was completed when the threshold 
remained unchanged. The final thresholds and their deviations for Tx, Ty, and Tz were –17.20 ± 0.24 dB, –
15.50 ± 0.21 dB, and 5.80 ± 0.14 dB, respectively. 
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Classification Result 

The RGB combination of the three phenological parameters showed that paddy fields were depicted in blue 
to red shade. Flooding, vegetation, and bare soil occurred from October 2017 to March 2018, showing 
dynamic changes in the land cover (Figure 5a). Most paddy fields in the flat areas in the north were easy to 
identify. Generally, six main objects can be identified: paddy fields, permanent water, fishponds, plantations, 
forests, and bare soil or settlements. The homogeneous blue color shows permanent water, such as the sea 
or reservoir, and the black color shows fishponds. The yellow-to-green color indicates that the area is covered 
only by vegetation or bare soil. 

Figure 5b shows the classification results obtained using the proposed method. The red, green, and blue 
layers were used for dynamic change (high backscatter change), growth or harvesting (high maximum 
backscatter), and flooding phenology (low minimum backscatter), respectively. The RGB composites of all the 
agreed phenologies represented in white are paddy fields. The combination of the two agreed phenologies 
was magenta, cyan, and yellow, whereas the one agreed-upon was blue, green, and red. Plantation, forest, 
and settlement were in the same class, with stable high-VH backscatter and high minimum and maximum VH 
backscatter, acting as the most dominant class in green. The second dominant class in white with a high 
maximum, low minimum, and high difference was paddy fields. Permanent water was the third most 
dominant class in magenta and blue, with low minimum and maximum values. The other classes included 
fishponds in the northern region, irrigation canals, and rivers (cyan). 

 

Figure 5. (a) RGB combination of three phenological parameters (red: minimum, green: maximum, blue: difference 

between maximum and minimum) and (b) RGB combination of three classification results (red: high difference, green: 

high maximum, blue: low minimum). 

Table 1 shows the classification accuracy results obtained using a simple threshold for the different numbers 
of phenological features. All three features, except recall, had the highest accuracy. A lower recall means that 
the area of the omitted paddy fields was higher, and a high precision showed a low commission error. The 
precision accuracy was higher than the overall accuracy, which is an advantage of using the SAR data. Paddy 
fields in mountainous areas are difficult to detect owing to the limitations of SAR images. 
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Table 1. Classification accuracy results using thresholds from different numbers of phenological parameters. 

Accuracy  
Accuracy (%) from 1 parameter Accuracy (%) from 2 parameters 

Accuracy (%) of 3-parameter 
Max-Min Min Max Max-Min, Max Max-Min, Min Min, Max 

Overall 92.36 87.06 40.57 93.71 92.67 89.27 94.02 
Precision 89.16 76.61 38.82 93.00 90.19 80.85 94.15 
Recall 90.84 94.68 99.18 90.16 90.45 93.86 89.78 
F1-score 89.99 84.70 55.80 91.56 90.32 86.87 91.91 
Kappa 83.81 73.69 3.14 86.55 84.42 77.88 87.17 

The classification accuracy using the three proposed paddy growth phenology features was 94.02%. This was 
0.31% and 1.65% higher than the highest accuracy obtained when using two features and a single feature, 
respectively. Considering a single feature, the most accurate was the dynamic change in land cover 
(maximum-minimum parameter), with an accuracy of 92.36%. The accuracy of the minimum features of the 
VH backscatter was approximately 87.06%; however, it could not separate the paddy fields from permanent 
water. The accuracy of the maximum features of VH backscatter was the lowest at 40.57%. This maximum 
feature cannot be used as a single image; however, when combined with dynamic features, the accuracy 
increased by 1.35%. 

Testing the Model to Surrounding Regions 

The algorithm developed in Subang was implemented in the surrounding regions, namely Bekasi, Karawang, 
and Indramayu, using the same threshold to verify the consistency. Figure 6 shows the classification results 
of paddy fields in the four regions using the proposed algorithm, which includes an Indonesian paddy field 
one-map as reference data [21]. The red, light green, and dark green colors represent undetected paddy 
fields, detected non-paddy fields as paddy fields, and agreement between the classification results and one 
map of paddy fields, respectively. 

 

Figure 6. Overlay paddy field classification results using 2D scatterplot algorithm in four regions and one-map paddy 

fields. 

The four regions had similar paddy field characteristics, and most of the paddy fields had technical irrigation. 
The main water resource was supplied by the Jatiluhur reservoir, specifically in the northern part of Bekasi, 
Karawang, and Subang, and the western part of Indramayu. Random sampling was applied to generate 20,000 
samples within the four regions to assess the accuracy of the paddy field classification. Similar to the previous 
samples, a circular polygon with a radius of 25 m was generated, and the samples were selected in a 
homogeneous area. The final number for homogeneous land cover was 16,390, consisting of: 2,864; 4,418; 
4,549; and 4,559 samples in Bekasi, Karawang, Subang, and Indramayu, respectively. 

The results of the classification accuracy assessment of the implementation algorithm for the four regions 
are presented in Table 2. The accuracy and precision of Karawang and Indramayu were slightly lower 
compared to Subang. The recall was high, indicating that the number of false-negative samples was lower in 
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these two locations than in Subang. This was because of the size of the paddy field parcel in Subang, 
specifically in the central and southern regions, which were scattered and more difficult to identify from the 
SAR data. Furthermore, the accuracy values in Bekasi were lower because of land-use change, which was 
close to Jakarta's capital city. 

Table 2. Accuracy assessment of the algorithm implemented in four regions. 

Region Overall (%) Precision (%) Recall (%) F1-score (%) Kappa (%) 

Bekasi 88.13 95.01 79.65 86.66 76.11 
Karawang 93.37 94.91 92.33 93.60 86.72 
Subang 94.64 96.18 89.35 92.64 88.43 
Indramayu 92.87 92.40 94.99 93.67 85.51 

Comparison between Simple Threshold and RF 

A comparison between the classification results of the 2D scatterplot using these simple thresholds and those 
of the RF algorithm was similar. The similarity between these two results using the Sorensen similarity index 
was 96.83%. This shows that 96.83% of the paddy fields matched, and the remaining 3.17% were dissimilar. 
The simple threshold algorithm detects that the omitted area is larger than that detected by the RF algorithm. 
The most inconsistent result was for the fishpond area in the northern region, which was detected as non-
paddy and paddy fields using a simple threshold and an RF classification algorithm, respectively. The simple 
threshold showed better results for detecting fishponds than the RF algorithm. 

Comparison with Related Studies 

The proposed algorithm was compared with those of two previous studies that used three features [17] and 
PMI [16]. The comparison was performed using the RF classification with the same training sample, and the 
scenarios were as follows: (1) 2D three features (minimum, maximum, and updated PMI); (2) three features 
(minimum, maximum, and variance) [17]; (3) PMI (normalized difference of maximum and minimum 
parameters) [16]; and (4) updated PMI (difference between maximum and minimum parameters). The 
classification accuracy results for the four scenarios are listed in Table 3. Scenario 1 and 2 were similar for all 
the accuracy types. The updated PMI (Scenario 4) was more accurate than the PMI (Scenario 3). The three 
parameters (Scenario 2) are independent and must be plotted in 3D. The advantage of the proposed 
algorithm is the dimensional reduction from 3D to 2D because the third parameter is dependent, thus 
simplifying the analysis. 

Table 3. Conflicts related to the management of the L3S are seen in the form, triggers, and handling of conflicts. 

Scenario 
Average (%) Deviation (%) 

Overall Precision Recall F1-score Kappa Overall Precision Recall F1-score Kappa 

Scenario 1 94.02 94.15 89.78 91.91 87.17 0.34 0.69 0.30 0.32 0.61 
Scenario 2 93.97 93.94 89.92 91.87 87.04 0.51 0.83 0.25 0.45 1.01 
Scenario 3 86.30 85.87 86.65 86.08 70.05 0.38 0.55 0.46 0.34 0.82 
Scenario 4 92.07 92.43 88.43 90.37 82.96 0.22 0.92 0.57 0.21 0.43 

Conclusion 

In conclusion, paddy fields can be successfully discriminated from other land cover types using a simple 
thresholding algorithm. The algorithm was based on the specific pattern of low minimum, high maximum, 
and high difference in VH backscatter in the 2D scatter plot. The classification result of the proposed 
algorithm had an accuracy of 94.02% ± 0.34%, which was comparable to the accuracy of other studies using 
3D parameters of 93.97% ± 0.51% and comparable to the accuracy of the RF algorithm with a Sorensen 
similarity index of 96.83%. The results showed that the proposed algorithm reduced the dimensionality from 
3D to 2D, and was easier to implement for mapping and monitoring paddy fields. The application of the 
algorithm to the surrounding regions of Karawang, Indramayu, and Bekasi achieved high accuracy rates of 
93.37%, 92.87%, and 88.13%, respectively. Therefore, this simple and practical algorithm can be 
implemented to classify paddy fields in a larger area to support national paddy field mapping and monitoring 
with high-accuracy mapping, particularly in plain areas. In higher-elevation areas, particularly steep slopes, 
the method needs to be improved. 
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