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ABSTRACT 

Forest inventory (FI) is an essential process for assessing the quality and quantity of forest resources, 

forming the foundation for strategic planning and sustainable management. Terrestrial methods 

(sampling / census), remote sensing methods, or a combination of these can be used to obtain this 

data and information. This study explores the application of LiDAR technology to improve forest 

inventory practices in plantation forests (teak and pine) in Java, Indonesia. LiDAR sensors, deployed 

via drones and handheld devices, were tested in several Perum Perhutani Forest Management Unit 

compartments, which were the locations of proof of concept (PoC). PoC is a testing process to prove 

the feasibility of a concept or methodology before it is implemented. The results showed that LiDAR-

based inventories provide superior accuracy compared to traditional methods, with data showing 

strong alignment with ground-truth measurements. These results underscore the potential of LiDAR 

technology to revolutionize FI practices and inform sustainable forest management strategies in 

Java and beyond. The use of this technology in natural forests where the variety of tree species is 

more diverse certainly requires further study. 

Introduction 

Forest inventory (FI) is needed to understand forest resources (FR), plan, and make decisions related to forest 
management through sampling, census, and remote sensing (RS) methods. This includes highly complex 
production planning (harvesting, transportation, and standing stock management), which requires a decision 
support system that combines effective mathematical models [1], carried out at the national, provincial, and 
management unit levels. Data on forest cover, type, and potential of forest stands, hydrology, and water 
management can be obtained from inventories at the watershed level [2]. More accurate and less labor-
intensive are required to estimate tree dimensions [3–5], so the use of RS based on 3D models is a possible 
alternative for collecting structural data [3,6,7]. Especially in the current precision forestry paradigm where 
forest planning uses digital data, detailed procedures, and operational controls. FI data are essential for 
accurately estimating various dendrometric and forest stand parameters; however, applying them manually 
is time-consuming, sometimes inaccurate, and expensive [8]. The use of RS is very helpful in obtaining 
deforestation data in Indonesia, which is estimated to reach ± 840,000 hectares, and Brazil ± 460,000 hectares 
in 2012 [9] because it is georeferenced, making it easy to integrate with Geographic Information System (GIS) 
databases. 

Visual estimation methods often used in inventory and operations pose a risk of bias, so it is necessary to 
collect data with multi-source techniques, including terrestrial surveys, satellite imagery analysis, and other 
georeferenced data. Emerging RS technologies are light detection and ranging (LiDAR), which uses laser 
pulses to capture images and create 3D models, in addition to aerial photography, satellite imagery, and radio 
detection and ranging (RADAR) techniques. Aerial photography uses image capture through optical cameras, 
satellite imagery uses ground electromagnetic radiation sensors, while RADAR, as an active RS, uses radio 
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waves to capture images and data according to wave numbers. LiDAR has high resolution and accuracy due 
to its ability to capture images accurately, aerial photographs can provide high resolution according to camera 
quality and lens distortion, while satellite imagery has varying resolution depending on the camera and sensor 
used. RADAR has lower spatial resolution compared to LIDAR and satellite imagery, although it can be used 
for other applications, such as groundwater mapping or monitoring atmospheric conditions. LiDAR can be 
affected by rain and fog conditions as well as vegetation density, aerial photographs are influenced by 
sunlight, and satellite images can be influenced by cloud cover, while RADAR has weaknesses in penetrating 
solid materials or detecting small objects. 

LiDAR technology was developed in 1961, using laser pulses to measure objects and delivering up to 50,000 
pulses per second, producing three-dimensional (3D) details, in the future, LiDAR sensors can measure terrain 
and extract various metrics from point clouds [10]. Unmanned Aerial Vehicles (UAVs) equipped with LiDAR 
sensors have been developed as an effective tool for land inventory, reducing labor volume and field 
operational costs [11]. LiDAR technology can be relied on to obtain Digital Surface Model DSM data, which is 
extracted into Digital Terrain Model (DTM) or Digital Elevation Model (DEM) data with a faster process and 
relatively low cost [12]. LiDAR data is widely used in inventory and area mapping because it captures metric 
values in high resolution and 3D to provide appropriate forest variables [13], of which Diameter at Breast 
Height DBH and agency are very important in FI, but manual surveys are inefficient [14]. LiDAR has significant 
efficiency and accuracy [15] and can effectively identify structural differences in various tropical forest 
locations [16]. In Indonesia, the use of LiDAR technology in forest planning is still limited because it relies on 
satellite imagery and traditional manual methods, while national laser technology in Sweden has been proven 
to be able to transform forest management planning at a lower cost than field surveys [17]. 

As one of the world’s largest producers of teak, Indonesia relies on two main sources of teak: plantation 
forests managed by Perum Perhutani, a state-owned enterprise (SOE), and rapidly expanding small-scale 
private forests, both of which are concentrated on the island of Java [18,19]. Pine is another dominant type 
of cultivated plant besides teak. The results of processed pine sap tapping contribute around 50% of the 
income of Perum Perhutani, which manages production and protects forests on the island of Java [20]. Perum 
Perhutani is a SOE for forestry which was inaugurated by the Indonesian Government in 1972, whose history 
of forest management began in the Dutch colonial era around 1897. This research will compare the results 
of measurements using LiDAR technology with those of manual terrestrial sampling measurements in the 
field. It is hoped that using LiDAR technology will make FI activities more accurate, effective, and efficient in 
teak and pine production forests on the island of Java. Apart from that, the use of LiDAR technology on the 
island of Java for inventory forest plantation teak and pine on a large scale has never been carried. 

Materials and Methods 

Study Area 

LiDAR sensors were mounted on UAVs and handheld / backpacks to collect data in Teak (Tectona grandis) 
and Pinus (Pinus merkusii) stand areas. Data acquisition in 4 compartments in 3 FMUs, namely in the pine 
stand area in West Banyumas (18.6 hectares) with airborne laser scanning (ALS) method, pine stand area in 
Cianjur (7.1 hectares) with ALS and hand-held mobile laser scanning (HMLS) methods, teak stand area in 
Cianjur (5.9 hectares) with ALS and HMLS methods, and Teak stand area in Purwakarta (12.0 hectares) with 
ALS and HMLS methods. The implementation time was morning to afternoon in April 2022 in West Banyumas 
(Central Java Province), August 2022 in Cianjur (West Java Province), and October 2023 in Purwakarta (West 
Java Province). The location map is shown in Figure 1. 

Data Acquisition 

The implementation phase begins with initial mapping and UAV flight path creation, where data is then 
collected via LiDAR sensors mounted on UAVs at 4 locations and handheld / backpacks at 3 locations. The use 
of LIDAR sensors with UAVs is capable of displaying 3D models, but the data recording position, when taken 
from above, some parts are not recorded properly [21]. Differences in spatial resolution and acquisition time 
can affect data accuracy and consistency [22]. Therefore, at 3 locations, data acquisition was carried out using 
the HMLS method on the same day as ALS, while improving data accuracy was carried out through data 
analysis and quality control during data extraction. 
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Figure 1. Study location. 

Data Processing 

Data on the number of trees (N), Diameter Breast (DBH), and tree height are obtained through segmentation 
per individual tree, with a process flow from data acquisition to data analysis using the ALS and HMLS 
methods, as shown in Figure 2. Meanwhile, tree plants / forestry stocks are identified through object height. 
3D data from point clouds, in addition to analyzing the number of trees, tree height, and DBH, can also be 
used for contour analysis and mapping (topography). The application of quality control through several 
stages, including checking the suitability of vegetation characteristic parameters with the results of point 
cloud segmentation, correcting the position of tree points to the position of tree trunks, and reprocessing 
the point cloud segmentation according to the corrected tree coordinate positions. 

 

Figure 2. Flowchart of LiDAR process. 
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Data processing generally occurs after acquisition, including downloading LiDAR and base station data, 
rendering, and checking data. Point cloud data processing (a collection of points representing the shape of 
the scanned object's surface and obtaining 3D coordinates (x, y, and z)) is done through the application. The 
data processed includes GPS and inertial navigation system (INS) data. Combining object-based data (point 
cloud and imagery) can produce high classification accuracy [23]. Point clouds were analyzed and sorted into 
3D models using specialized 3D mapping software. This study used Li-Geoference Software to convert 
distance measurements and positioning and orientation system (POS) information from ALS or HMLS systems 
into georeferenced coordinates.  

The software generated 3D point clouds in LAS or LiData format. The software maps them to a specific datum 
(World Geodetic System / WGS 1984) and / or projection system (Universal Transverse Mercator / UTM). The 
LiDAR360 Software is the foundation for an entire software suite with terabyte-level processing required to 
effectively interact with and manipulate LiDAR point cloud data. The software functions include data 
management, automatic strip alignment, and point cloud classification. The output is a detailed 3D model 
and textual data about the dimensions of the scanned object or area. LiDAR point clouds from ALS can be 
replicated and scaled to produce high-resolution, spatially clear forest structure maps [24] and obtain 3D tree 
structures [25]. 

Data Analysis 

In general, the results of data acquisition analysis of LiDAR are in the form of point clouds for further 
processing into 3D models, tree counting, and cross sections. The data from this process were then analyzed 
using the application, and a relevant regression model was created. In this study, data from manual terrestrial 
census techniques in the same area were used to control the accuracy of the output. Census data were 
collected by manually measuring each tree's DBH and tree height. DBH data were measured using a phiband, 
and body height was measured with a Haga Hypsometer.  

The relative error and ratio between the LiDAR results and manual terrestrial census were calculated as 
percentage values. The values obtained illustrate the differences between the two techniques. To ensure 
that there was no statistically significant difference between the manual terrestrial census and LiDAR results, 
an independent sample t-test was conducted using the SPSS v26 application with the following formula: 

𝑡 =
𝑥1̅̅ ̅̅ − 𝑥2̅̅ ̅̅

√
𝑠1

2

𝑛1
+

𝑠2
2

𝑛2

     (1) 

Description: 

x1: LiDAR sample mean    x2: Terrestrial census sample mean 

S1: LiDAR sample standard deviation  S2: Terrestrial census sample standard deviation 

n1: LiDAR sample size    n2: Terrestrial census sample size 

Decision-making in this independent sample t-test [26], as follows: 

1. If the Sig. (2-tailed) > 0.05 then H0 is accepted and Ha is rejected, because there is no significant difference 
between the average terrestrial census results and LiDAR results. 

2. If the Sig. (2-tailed) < 0.05, H0 is rejected and Ha is accepted because there is a significant difference 
between the average terrestrial census results and LiDAR results. 

Results 

Data Acquisition Results 

The range of the LiDAR sensor in the data acquisition process in ALS reaches a distance of ± 450 m, dual 
return, with an accuracy of ± 3 cm. While in HMLS, it reaches a distance of 25 to 50 meters, a single return, 
with an accuracy of ± 3 cm. The LiDAR sensor emits laser pulses of ± 300,000 points per second during UAV 
flight. At the same time, the LiDAR sensor in the HMLS emits laser pulses of ± 320,000 points per second. The 
laser emitted by the LiDAR drone can penetrate vegetation and reach the ground, although, in Pinus merkusii 
forests, it is sometimes not perfect. The LiDAR and UAV sensors were synchronized with the post-processing 
kinematic global navigation satellite system (PPK GNSS) from the Base Station for GPS correction for 
centimeter accuracy. The LiDAR on the HMLS was synchronized with the PPK GNSS to determine the 
coordinates of the scan path terrestrially. 
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LiDAR measures the distance to the target using laser light pulses and measures the wave reflections through 
the sensor. The reconstruction of the original shape is performed automatically using geotagged reflection 
target points. LiDAR sensors work in forest inventories described in Figure 3. The results of processing tree 
segmentation data using applications with special 3D mapping software to display individual tree differences 
through random colors are shown in Figure 4.  

 

Figure 3. Illustration of laser pulse return signal and measured signal strength (image modified [27]).  

  

Figure 4. Image 3D individual teak trees as result LiDAR data processing. 

Methods Comparison and Accuracy 

In general, there is insufficient evidence to show a statistically significant difference between the two 
methods of measuring the number of trees and volume. In other words, the t-test results show that both 
methods have almost the same average or no significant difference. This shows that using LiDAR technology 
in forest inventory is very possible in this study. Volume estimation using only ALS data is still slightly less 
accurate than combining it with HMLS, as seen in data from West Banyumas. Table 1 compares the results of 
LiDAR measurements and terrestrial census data. The relative error value (%) shows lower LiDAR 
measurement results with negative (–) or higher values, which is also seen in the ratio (%) between LiDAR 
measurement results and terrestrial census as a control. 

The result of LiDAR measurement showed the highest difference in tree volume (24.80%) and number of 
trees (N) (7.28%) in West Banyumas with the Pinus merkusii. Data acquisition only used the ALS method in a 
densely canopied forest (35-year-old Pinus merkusii). The relative error and ratio values cannot be statistically 
concluded to be different with a certain level of confidence. Furthermore, an independent sample t-test with 
a 95% confidence level on the results of N trees and volume is shown in Table 2. The t-value in Table 2 
indicates a negligible difference in the average number of trees (t = 0.109) and tree volume (t = 0.258) 
between LiDAR measurements and terrestrial census results. The p-values, each exceeding 0.05, statistically 
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demonstrate that the two measurement methods being compared do not differ significantly. Based on the t-
test results, no significant difference exists between the two methods; therefore, the null hypothesis (H0) is 
not rejected. 

Table 1. Data analysis LiDAR VS census terrestrial. 

FMU Species 

LiDAR Terrestrial census 
Relative error 
(%) 

Ratio (%)  
(LiDAR: Terrestrial 
census) 

N 
trees 

Volume 
(m3) 

N 
trees 

Volume 
(m3) 

N 
trees 

Volume 
(m3) 

N trees 
Volume 
(m3) 

Banyumas 
Barat 

Pinus merkusii 1,643 1,151.92 1,772 1,531.73 –7.28 24.80 92.72 75.20 

Cianjur  Tectona grandis 1,343 571.82 1,328 525.38 1.13 8.84 101.13 108.84 
Pinus merkusii 828 611.26 816 620.56 1.47 –1.50 101.47 98.50 

Purwakarta Tectona grandis 1,312 542.16 1,323 495.74 –0.83 9.36 99.17 109.36 

Total Tectona grandis 2,655 1,113.98 2,651 1,021.12 0.15 9.09 100.15 109.09 
Total Pinus merkusii 2,471 1,763.18 2,588 2,152.29 –4.52 –18.08 95.48 81.92 
Total Tectona grandis and 
Pinus merkusii 

5,126 2,877.16 5,239 3,173.41 –4.37 –8.98 97.84 90.66 

Source: Perum Perhutani. 

Table 2. Independent sample T-Test N trees and volume results. 

Equal variances 
assumed 

F Sig T Df Sig.(2-tailed) Mean Diff. Std. Error 
Diff. 

N trees  .014 .910 .109 6 .916 28.25000 258.04227 
Volume 1.100 .335 .258 6 .805 74.06250 286.85110 

Source: Data is processed using SPSS v26. 

Technical and Operational Analysis 

To determine the type, potential, and distribution of non-timber plants, the shape and dimensions of objects 
can be separated by analyzing 3D images scanned using LiDAR sensors. The data quality on the number of 
trees, tree diameter, and microtopography obtained has high accuracy. Sorting data of staple crops, shrubs, 
crops, and bamboo is faster using this application. In addition to forest inventory, floodplain mapping, 
hydrology, geomorphology, urban planning, ecology, and landscape can utilize LiDAR and GIS data for the 
analysis and management, visualization, and distribution of LiDAR data. Operationally, the work performance 
of teams using LiDAR is higher than that of teams using manual terrestrial methods. Monitoring activities' 
performance and completion time is easier by collecting automatically recorded and position data.  

However, the tool's operation is still weather-dependent because it is not recommended to operate under 
rainy and lightning conditions. The cost of equipment maintenance and UAV insurance must be considered 
in addition to the cost of training equipment operators and applications for equipment operation and data 
processing. Based on the results of this study, some of the advantages of LiDAR technology that can be 
discussed are that data acquisition can be made faster with a high level of accuracy. Several pieces of 
information, such as slope and topography for certain analyses, can be obtained at once. The operation can 
be performed at night, and this technology can be integrated with other data sources. 

Discussion 

The results of this study indicate that there is no significant difference between the number and volume of  
trees measured using LiDAR technology with ALS and HMLS devices and terrestrial census in the research 
location of Jati (Tectona grandis) and Pinus (Pinus merkusii) plantations. This finding is consistent with 
previous studies that also found that both methods provide similar results in estimating tree parameters in 
relatively homogeneous forests [28]. Moreover, one of the primary advantages of LiDAR lies in its ability to 
detect all elements of forest composition and structure, from the top of the canopy to the ground surface, 
allowing for more comprehensive data collection, including tree volume, which is essential information for 
forest managers [16,28]. The increased resolution and spatial coverage provided by LiDAR technology, 
particularly through ALS and HMLS devices with high-precision LiDAR sensors, enable more detailed 
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measurements of forest composition and structure. This study supports previous research that shows that 
LiDAR has great potential to improve the quality of forest inventories and ecological studies [29–32]. 
However, despite LiDAR's potential, this technology has limitations in terms of cost and operational 
complexity, particularly for managing large forest areas. Therefore, the application of LiDAR is currently more 
common in plantations with more structured and homogeneous forests. 

Although this study is limited to Jati and Pinus plantations, it provides valuable insights into the potential 
capabilities of LiDAR technology in these areas. However, the results cannot be generalized to forests with 
different tree species or more complex natural forests. The variation in vertical and horizontal forest structure 
is an important aspect of UAV LiDAR [16], and HMLS [32], and the differences in results become more 
apparent when applied to forests with higher tree species diversity and more complex forest structures [16]. 
Therefore, an important question that remains unanswered in this study is how accurate and reliable LiDAR 
can be when applied to tropical natural forests or restored forests. Furthermore, the high-dimensional data 
generated by LiDAR, although highly detailed, often poses challenges in statistical analysis and processing. 
Previous studies have shown that accurate predictive models are difficult to achieve due to the large volume 
of data that needs to be managed, requiring advanced statistical software and algorithms [16]. The 
opportunity to reduce the use of traditional methods can certainly save time and costs, but the challenge of 
processing large datasets must be addressed when implementing LiDAR technology in large areas. 

Meanwhile, alternative methods such as satellite imagery or aerial photography, which are currently widely 
used in Indonesia, have limitations in terms of forest type classification. Remote sensing techniques using 
these methods are unable to clearly distinguish between different types of restored forests (e.g., between 
conservation and production forests) [33]. Therefore, the development of machine learning techniques is 
necessary to address this issue and model forest attributes from remote sensing data more accurately. The 
implementation of machine learning on remote sensing data can improve the ability to automatically map 
forest types and reduce dependence on manual interpretation [33]. Further research can expand the use of 
LiDAR in the context of ALS or HMLS to inventory various other forest species. LiDAR technology, with its 
ability to provide accurate and detailed spatial information about tree composition and structure, has the 
potential to improve the accuracy of forest parameter estimation at the individual tree level [34]. However, 
as also found in several previous studies, the application of LiDAR in very large and dense areas may be limited 
by spatial and temporal coverage factors [35]. Therefore, one of the questions that needs to be further 
researched is how to overcome the limitations of spatial and temporal coverage in the use of LiDAR 
technology for inventorying larger and more diverse forests. 

Conclusions 

This research shows that LiDAR technology can significantly enhance the accuracy of tree attribute data, 
including tree number and volume, as confirmed by statistical analysis. Furthermore, the acquisition of 
spatially explicit data on individual tree characteristics, tree density, volume, canopy volume, and 
microtopography was accomplished more efficiently than traditional manual methods. Integrating ALS and 
HMLS techniques in the LiDAR-based forest inventory (FI) further improves the accuracy of the results. 
Moreover, incorporating artificial intelligence (AI) technology is expected to substantially enhance LiDAR-
based data acquisition, processing, and analysis efficiency and effectiveness. 
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