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ABSTRACT 

Landslides occur in many parts of the world. Well-known drivers, such as geological activities, are 

often enhanced by violent precipitation in tropical regions, creating complex multi-hazard 

phenomena that complicate mitigation strategies. This research investigated the utility of spatial 

data, especially the digital elevation model of SRTM and Landsat 8 remotely sensed data, for the 

estimation of landslide distribution using a machine learning approach. Bogor Regency was chosen 

to demonstrate the approach considering its vast hilly/mountainous terrain and high rainfall. This 

study aimed to model landslide hazards in Sukajaya District using random forests and analyze the 

key variables contributing to the isolation of highly probable landslides. The initial model, using the 

default settings of random forest, demonstrated a notable accuracy of 93%, with an accuracy 

ranging from 91 to 94%. The three main predictors of landslides are rainfall, elevation, and slope 

inclination. Landslides were found to occur primarily in areas with high rainfall (2,668–3,228 mm), 

elevations of 500 to 1,500 m, and steep slopes (25–45%). Approximately 4,536 ha were potentially 

prone to landslides, while the remaining area (> 12,000 ha) appeared relatively sound. 

Introduction 

Natural disasters vary significantly, and each has specific characteristics that lead to complex mitigation 
strategies. Hydrometeorological and geological disasters are two types of naturally occurring disasters 
commonly found in Indonesia [1]. The first has been recurring, as Indonesia is located in a tropical region with 
high, often torrential, rainfall with a distinctive amplitude. This leads to disasters in the form of droughts, 
landslides, tornadoes, and floods. With a shift in climate patterns [2], prior expectations of drought and floods 
are no longer completely valid, a situation that warrants suitable adaptive mitigation planning. Geological 
disasters are closely associated with the geographical location of Indonesia, intertwining the Eurasian, Indo-
Australian, and Pacific plates. These have been acknowledged to be very active compared to the rest of the 
world [3]. Their movement drives tectonic activities, which result in diverse and frequent natural disasters, 
such as earthquakes, tsunamis, volcanic eruptions, and landslides. 

The latter has a specific occurrence scheme that has been an emerging research focus in disaster studies. 
Although many consider landslides to be geologically related disasters, they can also be triggered by 
intensive, high-volume precipitation in specific regions. Landslide disaster studies using multiple disaster 
sources have attracted considerable research attention [4,5]. Given the nature of hazard or disaster research, 
the spatial context is critical in data analysis, information extraction, and visualization. Spatial data contribute 
to wall-to-wall studies of landslides and other hazard studies. In general, these can be classified into vector 
and raster data. Data presented in vectors generally provide baseline information such as a final map for 
public use. This type of data does not suit the frequently updated information, which conforms to raster data.  
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In hazard studies, both digital elevation model (DEM) and Earth observation data are useful. DEM data 
representing the morphology of a region have been demonstrated to be vital for estimating and mapping 
landslide-affected areas [6]. The resolution of the DEM is a significant benefit of the analyses [7]. Thus, the 
need for better DEM data in the future, within the context of spatial and temporal resolution, would make a 
significant contribution to landslide monitoring and other hazard studies. Combining both types of raster data 
has proven useful. Earlier research summarized the utility of remote sensing images [8–10]. Extending this 
context, multiple hazards have recently gained increasing attention. Shafique et al. [11] analyzed remote 
sensing data for landslide events triggered by the Kashmir earthquake. Further extension has been made in 
terms of multi-temporal data to understand the history of landslides [12]. 

Irrespective of the type or amount of data, thematic information extraction has generally been performed 
using machine learning for either classification [13] or regression problems [14]. The main advantages of 
using this approach include optimization of the model through subsampling and options for model 
reimplementation with minimum data inputs. Despite this, studies on machine learning applications for 
hazards, especially landslides, have been conducted. Commonly used machine learning methods such as 
random forests have been demonstrated to provide accurate predictions of landslide vulnerability in Taiwan 
[15]. Tengtrairat et al. [16] indicated the benefits of a bidirectional long short-term memory (BiLSTM) 
machine learning model in disaster risk analysis in Thailand. Contemporary research shows significant 
performance of machine learning methods compared to conventional methods [17]. 

Although various machine learning techniques have been used in previous studies, the geographical context 
indicates the need for studies in specific geographies as a venue to better understand landslide characteristics 
or perhaps as a part of the development of generic machine learning models. This research was generally 
designed to develop machine-learning-based modeling as an initial step for the development of generic 
models in similar landscapes. Specifically, this research aimed to study the random forest approach to 
produce geographical estimates of landslide occurrence and examine important variables yielded by selected 
models. In addition, parameter optimization was performed to obtain a statistically better model. 

Methodology 

Study Area 

This research was conducted in Sukajaya District, Bogor Regency (Figure 1). The research area has an 
undulating to mountainous topography, which includes the upper and middle slopes of the Halimun-Salak 
Mountains. With complex terrain conditions, the study area has a record of past landslides with a high 
likelihood of future land surface movements. 

 

Figure 1. Study area. 
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Data Collection and Analysis 

The landslide point inventory was carried out through observations and interpretations of high-resolution 
Google Earth images within the last three years (Figure 2). Some of these observation points were validated 
using field surveys conducted between February and March 2021. Road signs related to landslide occurrences 
were recorded, indicating evidence of past disasters. In addition, landslide scars (barren) or prior scars 
(usually non-woody vegetation) were also collected; some were informed by locals. All data (3,040 sample 
points), either landslide (1,021 points) or non-landslide (2,019 points) categories, were combined into a 
spatial database, which served as a sample set for data analysis using a machine learning approach. Figure 3 
shows the spatial coverage of the sample dataset. 

 

Figure 2. Identifying landslide events from Google Earth. 

 

Figure 3. Spatial distribution of the landslide point dataset. 
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This study assessed proxies of landslide events derived from three types of primary data. Terrain conditions 
were represented by the Shuttle Radar Topography Mission (SRTM) DEM data with a spatial resolution of 30 
m downloaded from the US Geological Survey (USGS) Website. This resolution was chosen to match the 
Landsat 8 data. These images with level 2 processing were downloaded; hence, standard radiometric 
correction was performed internally using USGS. Landsat data represent the dynamics of land cover, which 
is an essential element in landslide modeling. The third dataset was rainfall obtained from the Climate 
Hazards Group InfraRed Precipitation with Station data (CHIRPS) downloaded from their website 
(https://www.chc.ucsb.edu/data/chirps, accessed on 2 July 2021). All datasets were spatially co-registered 
according to the Landsat data. 

Figure 4 illustrates the research framework used in this study. DEM data were processed using QGIS software 
to generate five terrain variables: elevation, slope, aspect, Topographic Wetness Index (TWI), and slope 
curvature. Rózycka et al. [18] showed that although common terrain parameters, such as slope, were quite 
successful, the application of TWI in modeling offers opportunities for more detailed information. Changes 
in slope appearance due to landslides were indicated by high TWI values. Previous research indicated that 
DEM showing a specific plan curvature indicated high potential hazards compared to concave or convex 
slopes [19]. 

 

Figure 4. Research framework. 

The availability of Landsat 8 Surface Reflectance (SR, Level 2) data accelerates data processing, considering 
that this type of data has undergone radiometric calibration. Thus, SR data can be directly inserted into the 
Normalized Difference Vegetation Index (NDVI) equation, as proposed by Rouse et al. [20], using bands 4 and 
5. As a good representation of land cover conditions, NDVI has become one of the main variables in spatial 
analyses related to natural disasters, including landslides. NDVI analysis of landslide disasters has been 
proven in previous studies [21–23]. Rainfall is highly correlated with landslide events. High, frequent 
downpours would destabilize soils in sloping land surfaces; hence, this type of precipitation was ingested in 
the analysis. Hong et al. [24] presented a global analysis of the influence of rainfall on landslide events and 
concluded that rainfall is a potential proxy for landslide modeling. 

Data analysis for classifying landslide or non-landslide classes was carried out in R software using a source 
code written in the RStudio software. All raster and vector data were converted employing 'raster' package. 
All sample data and raster attributes at corresponding locations were collected in the same set of data 
frames, an R terminology for data preparation prior to modeling. Shortly before modeling, samples were 
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partitioned into training and testing data at a ratio of 70:30 using a ten-fold cross-validation resampling 
technique. Random forest modeling was carried out using commonly used R package, the 'randomForest' 
package. This approach was developed as an extension of conventional decision trees. While decision-making 
in decision tree methods is fairly robust for simple classification problems, a single decision-making process 
would not suit complex problems. Thus, an ensemble approach would theoretically reduce the bias. The 
ensemble approach has been adopted in many newly developed decision tree algorithms, including Extreme 
Gradient Boosting. 

The random forest base model was examined through default parameterization, which was then revised by 
analyzing the variance of accuracy with several arbitrary parameter values. This procedure is known as tuning. 
This research focused on tuning the n-tree parameter, considering that the number of decision trees has 
been shown to be very important for enhancing the overall accuracy [25]. The overall accuracy was computed 
using validation data independent of the training data, which was 30% of the total sampling pixels. First, we 
assessed the confusion matrix to better understand the deviation. Next, we computed the overall accuracy 
by summarizing the diagonal of the confusion matrix. To analyze the variables with the highest contribution, 
this study used the variable importance approach. The model with the highest accuracy was subsequently 
inverted to generate estimates of the landslide susceptibility distribution. The inversion method was 
implemented using the 'raster' package in R. 

Results and Discussion 

Model Accuracy 

The use of the random forest model with default settings resulted in an overall accuracy of 93%. The 
confidence interval ranged from 91 to 94%, suggesting that a random forest model is an excellent choice for 
the initial modeling process. The obtained results were better suited than similar models reported in India 
[26], Japan [27], and Greece [28]. However, the number of samples plays a significant role. This maiden 
outcome should then be broadened to include a diverse landscape, especially in areas with different 
precipitation levels. Machine learning algorithms generally have several parameters that need to be tuned. 
This is typically used to optimize the performance of the initial model. Compared to equivalent algorithms 
such as Support Vector Machine (SVM), the random forest method has fewer parameters to adjust. 
Therefore, this method is generally advisable, particularly when standard processing yields weak models. In 
this study, only the n-tree parameter was investigated. The results of the experiments with varying accuracies 
owing to changing n-tree parameters are presented in Table 1. 

Table 1. Configuration of n-tree number and accuracy. 

N-tree setting Overall accuracy 

100 0.925 
200 0.926 
300 0.929 
400 0.929 
500 0.930 
600 0.929 
700 0.928 
800 0.927 
900 0.927 
1000 0.928 

A tuning experiment indicated that the optimal n-tree for the data was 500. Although the results of overall 
accuracy at various values were not significantly different (roughly under 1%), the pattern of accuracy 
indicated diminishing returns. This indicates that setting excessive values can reduce accuracy, a condition 
similar to that in a previous report [25]. The results of model inversion are presented in Figure 5. This landslide 
estimation map indicated clustered locations of landslide disasters in the study area, particularly in the 
northern flank of the mountain range. However, the likelihood of landslides is low in most research areas. 
Further spatial analysis by calculating impacted areas showed that there was a high chance of landslides 
covering approximately 4,536 ha, whereas safe areas covered more than 12,000 ha. 
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Figure 5. Estimation of landslide occurrence using the best model. 

Contributing Variables 

Figure 6 ranks the variables responsible for the targeted classes. The three most influential landslide 
predictors in the study area are rainfall, elevation, and slope. Landslide events were suspected to occur at 
locations with very high rainfall (2,668–3,228 mm), elevations ranging from 500 to 1,500 m above sea level, 
and steep slopes (25–45%). These proxies are widely understood as important variables in landslide event 
modeling. A very high level of precipitation could rapidly increase the soil moisture and put more weight on 
the soil column. While this would have less impact over flat terrain, in hilly or mountainous regions, gravity 
would trigger a substantial pull, leading to landslide events. Steep slopes also initiate landslides when 
gravitational force permits, even with substantial vegetation cover (see also the case presented in Figure 2). 

  

Figure 6. Response variables. 

Conclusion 

The random forest method, as a machine learning approach, was shown to be excellent for landslide hazard 
modeling because it yielded > 90% accuracy. Rainfall, elevation, and slope were the dominant factors that 
caused landslides in the study area. Tuning the n-tree parameters slightly indicates diminishing returns. The 
best outcome was provided by n-tree = 500, despite a difference of less than 1% compared with the other 
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settings. Model inversion indicated landslide hazard areas covering approximately 4,536 ha, which is believed 
to be important for inclusion in future land use planning or developing mitigation strategies. Although high 
classification confidence was outlined in this study, the implementation of the model was fairly challenging. 
The primary considerations include the extent to which the model is applicable to different environments. 
This requires extensive near-future research in similar landscapes to investigate the variations and model 
overfitting. In terms of possible implementation in mitigation planning, an extension of this research, 
covering the entire area of Halimun-Salak National Park, would significantly contribute to better spatial 
planning at regency levels. 
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