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Abstract. In this study, we set out to find unusual patterns in specific areas 

using data from Landsat 8 and ASTER satellites, including Thermal Infrared 

Sensor (TIRS) data. We used various techniques like georeferencing, 

radiometric calibration, and atmospheric correction to examine land surface 

temperatures (LST) during the day and night. We focused on four types of 

natural land cover: water bodies, vegetation, built-up areas, and barren land. 

Interestingly, we noticed that water bodies had cooler temperatures during 

the day but got warmer at night, while vegetation was cooler at night and 

warmer during the day. To accurately spot areas with higher temperature 

anomalies, while filtering out colder spots due to sunlight, we overlaid 

daytime and nighttime LST data based on land cover types. Additionally, we 

used thematic maps from satellite images to pinpoint village areas. To double-

check the anomalies we observed, we compared our findings with geological 

maps. Through this approach, we successfully identified nine distinct regions 

where temperatures were 3 to 6 degrees Kelvin higher than the normal 

background temperature. 
 

 

How to cite (CSE Style 8th Edition):  
Muhajir MA, Seminar KB, Nelwan LO. 2023. Detecting thermal anomalies in lahendong geothermal prospect using ASTER TIR and 

Landsat 8. JPSL 13(3): 494–503. http://dx.doi.org/10.29244/jpsl.13.3.494–503. 

 

INTRODUCTION 

The sustainability of various activities within the community, which is also influenced by the national 

industrial sector, depends on the supply of electricity. This has resulted in an increasing need for a reliable 

supply of electrical energy. Therefore, the electricity sector plays a strategic role in determining efforts to 

improve community welfare and encourage the national economy to run. In accordance with Act No. 30 of 

2007 on Energy, maintaining the security and sustainability of domestic energy supply requires cooperation 

and synergistic efforts from the government, private sector, and public. The lack of actions to anticipate and 

ensure the sustainability of the energy supply from the start will result in more costly consequences in the 

future. 

To address the pressing issues of our energy supply and combat the environmental challenges associated 

with global warming, the utilization and advancement of renewable energy resources have become more 

crucial than ever. The government, as laid out in Presidential Regulation No. 5 of 2006 on National Energy 

Policy, has taken steps to create a national energy management plan covering the period from 2006 to 2025. 

 



Jurnal Pengelolaan Sumber Daya Alam dan Lingkungan 13(3): 494–503  
 

495 

According to this plan, the goal is for 17% of our nation's energy to come from renewable sources, highlighting 

the pivotal role that renewable energy will play in our future. Indonesia is fortunate to possess a diverse array 

of new and renewable energy sources, including geothermal, hydropower, biomass, solar energy, and marine 

energy. Indonesia's unique geographic location, nestled amidst the dynamic tectonic plates of Indo-Australian, 

Pacific, Philippines, and Eurasian, positions it as one of the world's most geologically active regions. This 

favorable positioning grants Indonesia an abundance of geothermal energy resources, scattered across 285 

locations along the volcanic arc, boasting an impressive potential of 29,215 Gigawatt electrical (GWe).  

Geothermal is a source of heat energy contained in hot water, water vapor, and rock along with other 

minerals and other gases that are genetically inseparable in a geothermal system and for its utilization required 

mining process (Law No. 21 of 2014). Geothermal systems are typically found in areas where the Earth's crust 

contains a significant amount of heat. This elevated heat is linked to the presence of young igneous or hot 

rocks located deeper within the Earth's crust (DiPippio 2005). The surplus geothermal heat that becomes 

evident at the Earth's surface is a result of the movement of groundwater, creating what is known as a 

hydrothermal system. Surface water travels to great depths, where it gets heated, and then it rises back to the 

surface through underground "pipe systems" connected to nearby fractures or other permeable rock formations. 

When these heated waters breach the surface, they can give rise to distinct geothermal phenomena like hot 

springs, fumaroles, geysers, and mud pots. 

Thermal Infrared remote sensing data proves valuable in mapping and quantifying temperature variations 

associated with surface geothermal features like hot springs, geysers, fumaroles, and heated ground. This 

approach can economize geothermal exploration across extensive areas, facilitating the detection of potential 

sites for further investigation through on-site surveys (Hodder 1970; Lee 1978; Mongillo 1994; Haselwimmer 

and Prakash 2011). Moreover, thermal infrared remote sensing has found applications in documenting and 

monitoring the long-term temperature characteristics of developed and safeguarded geothermal systems 

(Mongillo 1994; Seielstad and Queen 2009). 

Remote sensing technology offers a way to understand the characteristics of objects or areas on Earth's 

surface without the need for direct physical examination. In this study, our aim is to find regions with 

geothermal anomalies using data from remote sensing, specifically Landsat 8 and the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer (ASTER) Satellite images. These images come with a Thermal 

Infrared Sensor (TIRS) that helps us spot differences in surface temperature anomalies across the Earth's 

surface. 

 

MATERIALS AND METHOD 

Study Area 

This study was conducted between March and December 2020. Lahendong, North Sulawesi, was chosen 

as the research location for data collection, while data processing was conducted at the MIT for NRM (Master 

of Science in Information Technology for Natural Resurces Management) Computer Lab, Biotrop, Bogor, 

West Java. Lahendong is a geothermal area in Tomohon, North Sulawesi, which is about 30 kilometers south 

of Manado, the provincial capital. It's in a spot on Sulawesi Island shaped by geological processes, and the 

region where Lahendong is situated is part of the Tondano Depression, which is like a valley that stretches 

about 20 kilometers from north to south and opens to the west. In this depression, Pangolombian rim is found 

as a significant feature in the Lahendong geothermal system (Koestono et al. 2010). 

 

Material 

Primary Data 

For our study, we relied on data from two satellite sources: Landsat 8, which has a TIRS, and ASTER 

sensor on the Terra Satellite. We chose the year 2018 as our focus because, according to satellite records from 
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Landsat 8 and ASTER TIR spanning 2018 to 2020, it had the least cloud cover during the same season. It's 

worth noting that the temperature data we collected was from clear scenes, without any cloud interference. To 

address the impact of sunlight on the Earth's surface, we employed land surface temperature (LST) data from 

remote sensing images, considering both day and night conditions. These images were carefully adjusted for 

radiance and underwent correction for any geometric distortions, referred to as "level 1T." In particular, we 

made use of ASTER TIR bands for nighttime data in 2018 and Landsat 8 TIRS daytime data from the same 

year, as detailed in Table 1. This method allowed us to effectively spot areas with unusual temperature patterns. 

Table 1 Landsat 8 and ASTER TIR acquisition date 

Satellite Acquisition Date Path Row 

Landsat 8 9/2/2018 112 59 

ASTER TIR 12/3/2018 220 185 

 

Secondary Data 

We relied on a detailed topographic map, generously provided by the Badan Informasi Geospasial (BIG), 

with a scale of 1:50,000. This map aided us in identifying key features like roads, rivers, and settlements. To 

determine the ground elevation in the area, we consulted the Digital Elevation Model Nasional (DEMNAS), 

also made available by BIG. Additionally, we referred to a geological map by Siahaan et al. (2005) and Utami 

et al. (2004) to gain insights into the geological characteristics of the study area. 

 

Methods 

Our research journey consisted of several important stages, each contributing significantly to our findings. 

Initially, we focused on improving the quality of our remote sensing data by addressing factors like 

atmospheric, radiometric, and geometric distortions, ensuring the reliability of our information. Following this, 

we calculated LST)\ and emissivity for both Landsat and ASTER datasets using the Planck function inversion 

method, following the procedures outlined by Stathopoulou and Cartalis (2007). We also carefully selected the 

most suitable ASTER band for LST retrieval, settling on bands 13 and 14, with band 14 being our choice for 

ASTER data analysis. Subsequently, we conducted a statistical analysis, overlaying daytime and nighttime 

LST images to devise a method for detecting geothermal anomalies. This involved determining a suitable 

threshold to distinguish between regular temperature values and anomalies, a crucial step in our geothermal 

investigation. Lastly, our research involved a thorough examination of geothermal anomalies using 

preprocessed medium-resolution satellite imagery, with these anomalies being a key focal point of our study. 

 

Image Preprocessing 

The data quality from specific Landsat 8 OLI bands, namely the red (band 4), near-infrared (band 5), and 

TIRS thermal infrared band 10 (with wavelengths ranging from 10.60 to 11.19 μm), was significantly improved 

through rigorous radiometric calibration and atmospheric correction processes. To ensure precise correction 

for variations related to terrain, we relied on orthorectified images provided by the United States Geological 

Survey (USGS). Radiometric calibration, a vital component of our methodology, was systematically applied 

to convert the recorded Digital Number (DN) values from the remote sensors into atmospheric radiance 

images, following the prescribed Equation 1. Notably, the USGS in 2015 furnished us with the requisite 

radiance multiplicative scaling factor (ML) and radiance additive scaling factor (AL), enabling us to compute 

spectral radiance in accordance with established procedures. 

 

Lλ = MLQcal + AL 
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In this context, Lλ represents the spectral radiance at the top of the atmosphere (TOA), measured in units 

of w/m-2/sr-1/µm-1, while ML stands for a band-specific multiplicative scaling factor derived from the 

metadata, typically labeled as RADIANCE_MULT_BAND_x, with 'x' indicating the specific band number. 

AL, similarly band-specific, represents an additive scaling factor, sourced from the metadata as 

RADIANCE_ADD_BAND_x. Lastly, Qcal denotes the pixel value in our data after quantization and 

calibration, expressed as DN. To convert the spectral radiance data of the TIRS bands into brightness 

temperature, we utilize thermal constants provided within the metadata file, guided by Equation: 

 

T = K2 / (ln (K1 / Lλ + 1) 

 

T represents the brightness temperature as observed by the satellite, measured in Kelvin (K). Lλ stands 

for the spectral radiance at the TOA, given in units of w/m-2/sr-1/µm-1. K1 is a thermal conversion constant 

specific to the band and can be found in the metadata under K1_CONSTANT_BAND_x, with 'x' indicating 

the band number, which can be either 10 or 11. Similarly, K2 is another band-specific thermal conversion 

constant sourced from the metadata as K2_CONSTANT_BAND_x, again with 'x' representing the band 

number, which can be either 10 or 11. These constants are essential for converting spectral radiance into 

brightness temperature. 

The process of calculating ASTER surface temperatures begins with the conversion of Digital Numbers 

(DNs) to radiance. For this purpose, the equation can be expressed as follows: 

Lλ = (DN – 1) x UCC 

Lλ stands for spectral radiance, which essentially measures the amount of light emitted across various 

wavelengths. DN, on the other hand, represents the digital values obtained from the thermal infrared (TIR) 

band readings. The parameter UCC is a significant unit conversion coefficient (0.005225 W/m-2/sr-1/µm-1) 

used to translate these readings into meaningful units. For precise details on the coefficients (K1 and K2) 

specific to the TIR bands of the ASTER instrument, you can refer to Table 2. The resulting temperature, 

measured in Kelvin, is determined by applying:  

 

T=K2 / (ln (K1 / Lλ + 1) 

Table 2 K1 and K2 coefficients of the TIR bands of the ASTER instrument 

Band K1 (W·m2·sr-1·µm-1 ) K2 (W·m2·sr-1·µm-1) 

Band 10 

Band 11 

Band 12 

Band 13 

Band 14 

3,047.47 

2,480.93 

1,930.80 

865.65 

649.60 

1,736.18 

1,666.21 

1,584.72 

1,349.82 

1,274.49 

 

Landsat 8 OLI Emissivity and LST Calculation 

For the OLI images, we applied radiance-to-reflectance conversions and conducted atmospheric 

corrections using the DOS1 method to enhance our understanding of the Earth's surface. We utilized the 

normalized difference vegetation index threshold method (NDVITHM) to estimate Land Surface Emissivity 

(LSE) and LST. Interestingly, there was no need for atmospheric correction when we worked with the TIRS 

band. Initially, the TIRS bands provided data at a 100 meter resolution, but since 2010, the USGS resampled 

them to a finer 30 meter resolution using cubic convolution to match the spectral bands of the OLI Sensor. 

Various methods are available for estimating LSE and LST using remote sensing data. In this research, 

the NDVITHM approach, which has undergone further refinement and development by prior researchers, 

including Sobrino et al. (2001) and Valor and Caselles (1996), was employed. To calculate LSE, the statistical 
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relationship between the Normalized Difference Vegetation Index (NDVI) and emissivity across the TIR 

spectral bands within the NDVITHM framework was utilized. Specifically, Band 10 from Landsat 8 was 

chosen due to reported calibration instability in Band 11, as noted by Barsi et al. (2014). Equation below 

presents the mathematical expression that facilitates the determination of LSE, taking into account NDVI, 

vegetation characteristics, and soil emissivity.: 

 

ε = 0.004 Pv + 0.986 

 

Here, ε represents emissivity, and Pv denotes the proportion of vegetation. Pv is derived from the NDVI value 

and subsequently inserted into: 

 

Pv = (NDVI – NDVImin / NDVImax – NDVImin)2 

 

The calculation of LST was accomplished using the Planck inversion function, as introduced by Stathopoulou 

and Cartalis (2007): 

 

LST = BT/1 + λ × (BT/p) × Ln (ε) 

 

Where λ is wavelength of emitted radiance, ε denotes LSE and p is equal to 14,380. 

 

ASTER Emissivity and LST Calculation 

The calculation of Land Surface Emissivity (LSE) in this study was based on the NDVI approach, a 

method widely utilized for estimating LSE across different sensors using visible and near-infrared (VNIR) 

data. To determine NDVI this equation was used in this study: 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

 

NIR denotes the reflectance in the near-infrared band, and R signifies the reflectance in the red band captured 

by the ASTER sensor. The algorithm developed by Jiménez-Muñoz and Sobrino (2009) was employed in this 

study to estimate Land Surface Emissivity (LSE) based on NDVI. This choice was made due to its rigorous 

validation with in situ data for ASTER TIR bands 10 to 14, as elaborated in Equations below: 

 

ε10 = 0.946+ 0.044Pv 

ε11 = 0.949 + 0.041Pv 

ε12 = 0.941 + 0.049Pv 

ε13 = 0.968 + 0.022Pv 

ε14 = 0.970 + 0.020Pv 

 

ε represents thermal infrared emissivity in individual channels, while Pv signifies the fraction of 

vegetation, occasionally known as fractional vegetation cover. The calculation of the vegetation fraction was 

derived from the computation of NDVI. NDVIv corresponds to the NDVI value attributed to vegetation, 

whereas NDVIs represents the NDVI value assigned to soil. Specifically, NDVIv was set at 0.7, and NDVIs 

was established as 0.05. These particular values were determined by analyzing the NDVI histogram, following 

the approach outlined by Xiong et al. (2019). 

 

Pv = (NDVI – NDVIs / NDVIv – NDVIs)
2 
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The Planck function served as a fundamental tool in calculating thermal radiation intensity. It quantifies 

the thermal electromagnetic wave emissions from an object, assuming it behaves as a blackbody in equilibrium 

at a known temperature. With knowledge of the LSE in a specific area, we can estimate the LST by inverting 

the Planck function. This inversion process relies on the assumption that the land surface can be considered a 

black body, characterized by an emissivity of 1. The use of the Planck function validates the correction of 

emissivity in brightness temperature calculations. In this study, the Planck function played a central role in 

estimating LST. The formula for computing emissivity-corrected land surface temperature is made available 

through the Planck inversion function, introduced by Stathopoulou and Cartalis in 2007. Additionally, Table 

3 offers information on the effective wavelengths of the TIR bands. 

Table 3 Effective wavelengths (λ) of the TIR channels of the ASTER instrument 

Band Effective wavelength (λ) in µm 

Band 10 

Band 11 

Band 12 

Band 13 

Band 14 

8.287 

8.685 

9.079 

10.659 

11.289 

 

Determining Geothermal Anomaly 

Utilizing geological mapping, geothermal anomalies within the LSTs map were confirmed. The study 

identified regions with LSTs approximately 3–6 K higher than the background temperatures. Previous research 

conducted by Siahaan et al. (2005) extensively documented the geological characteristics of the Lahendong 

geothermal field, encompassing altered terrains and thermal manifestations. These thermal manifestations 

primarily cluster along the western and northern shores of Linau Lake, spanning across Leilem, Lahendong, 

and Kasuratan Villages. They predominantly belong to the steam-heated type and are often aligned with NE-

SW trending faults. Notably, neutral pH water discharges were not identified within the Lahendong area.  

These thermal manifestations manifest in various forms, including altered and steaming ground, acidic-

sulfate hot springs, mud pots, mud pools (with or without mud volcanoes), and sulfide gas emissions. Common 

minerals found in these altered terrains include kaolin, residual silica, sulfur, very fine-grained pyrite, 

aluminous salts, and iron oxide. The most vigorous thermal activity is concentrated in the Linau area, home to 

fumaroles with temperatures as high as 106 °C. The study area also encompasses the hottest steaming ground 

(T = 60–98 °C at a depth of 45 cm) and the most scorching acid-sulfate springs (T = 80–90 °C, pH = 2–4). 

According to data provided by the Ministry of Energy and Mineral Resources in 2017, three specific 

occurrences were designated as fumaroles. These fumaroles were situated in the vicinity of Lake Linau, Lailem 

Village, and Lahendong (Table 4). Brehme et al. (2019) compared fault locations with hot springs. On the 

map, hot springs are given the symbol M which indicates surface manifestation. Some of the identified surface 

manifestations were M1, M2, M3, M4, M10, M11, M13, M15, M16, and M17. The fault location 

characteristics of hot springs in Lahendong indicate that hot springs are present under certain types of 

conditions, for example, at fault tips, intersections, and fault lines. Unclear hot springs were assumed to be 

hidden faults. 

Table 4 Surface manfestation 

Location Types X Y Elevation Temp oC (pH) 

Linau Fumarole 1240 49’ 18.81’’ E 10 16’ 8.65’’ N 812 92 2 

Lailem Fumarole 1240 49’ 11.21’’ E 10 16’ 4.39’’ N 779 90 2 

Lahendong Fumarole, Mudpool 1240 48’ 45.32’’ E 10 16’ 26.84’’ N 700 89 2 

Source: ESDM (2017) 
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RESULTS AND DISCUSSION 

Daytime LST extracted by Landsat 8 

For the TIR band of the Landsat 8 TIRS sensor, K1 and K2 were constants obtained from the data's 

metadata file. NDVI min and NDVI max were determined through calculations involving NDVI values. Land 

surface emissivity (ε) was then computed by multiplying the proportion of vegetation (Pv) by 0.004 and then 

adding 0.986. Then the land surface temperatures (Figure 1) were calculated by utilizing the Planck inversion 

function introduced by Stathopoulou and Cartalis (2007), utilizing the coefficients provided in Table 2. 

Throughout daylight hours, surface temperatures ranged from 293.76 K to 304.43 K, with an average of 297.48 

K and a standard deviation of 1.63 (Figure 2). 

 

 
 

Figure 1 Landsat 8 daytime land surface 

temperature band 10 
Figure 2 Daytime histogram of land surface 

temperature extracted by Landsat 8 Band 10 

 

Nighttime LST extracted by ASTER TIR 

This study aimed to estimate LST using ASTER TIR data. The Planck function inversion technique was 

employed for this purpose, and it allowed us to derive the Emissivity (ε) values using the Jiménez-Muñoz et 

al. (2006) algorithm.  

 

 

 

Figure 3 ASTER TIR nighttime land surface 

temperature band 14 

Figure 4 Nighttime histogram of land surface 

temperature extracted by ASTER TIR Band 14 
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To highlight the vegetation characteristics, the study involved the calculation of the NDVI, a widely-used 

indicator of vegetation health. Importantly, NDVIv represented areas abundant in vegetation with a fixed value 

of 0.7, while NDVIs represented regions dominated by soil and maintained a value of 0.05. These specific 

values were derived from the NDVI histogram following the methodology outlined by Xiong et al. (2019). 

The study's primary focus revolved around the inversion of LST during nighttime in the year 2018, and the 

resulting outcomes are presented in Figure 3. This depiction provides a comprehensive view of temperature 

distribution, spanning from 288.18 K to 295.10 K, with an average of 290.05 K and a standard deviation of 

0.79, as visually represented in Figure 4. These findings significantly contribute to our understanding of 

thermal conditions within the study area during the night. 

 

Geothermal Anomalies in Lahendong Area 

Within urban and suburban settings, encompassing diverse land cover types such as vegetation, barren 

land, built-up areas, and water, an extensive analysis of temperature distributions was conducted. Table 5 and 

Table 6 offer insights into these temperature patterns. In daylight hours, water bodies primarily exhibited 

temperature ranges from 293.42 K to 300.46 K, categorizing them as relatively cooler anomalies. During the 

night, water bodies displayed temperature ranges spanning 289.29 K to 295.10 K, marking them as relatively 

warmer anomalies. Conversely, vegetated regions exhibited distinct diurnal temperature profiles, featuring 

higher temperature anomalies, ranging from 292.94 K to 301.45 K during the day. In contrast, nighttime 

temperatures in vegetated areas primarily ranged from 288.209 K to 293.798 K, signifying cooler nighttime 

conditions and warmer daytime temperatures. These findings underscore the diurnal temperature fluctuations 

within vegetated landscapes. 

Table 5 Day time temperature for different land cover types. 

Land cover types 
LST at day 

Min Max Range Mean Stdev 

Barren Land 293.00 302.88 9.88 297.12 1.36 

Vegetation 292.94 301.45 8.52 295.51 0.89 

Built-up Area 293.86 303.51 9.65 298.74 1.75 

Water 293.42 300.46 7.04 295.43 0.98 

 

Table 6 Nighttime temperature for different land cover types 

Land cover types 
LST at night 

Min Max Range Mean Stdev 

Barren Land 288.20 294.53 6.33 290.10 0.67 

Vegetation 288.21 293.80 5.59 289.73 0.43 

Built-up Area 288.18 294.60 6.43 290.44 0.69 

Water 289.30 295.10 5.80 293.68 1.41 

 

To precisely locate the areas with elevated temperature anomalies within the geothermal anomaly zone, 

we conducted a comprehensive analysis of both daytime and nighttime LSTs. This dual approach effectively 

filtered out the temperature anomalies induced by solar radiation on various land covers. Additionally, we 

applied Geographical Information System (GIS) analysis to identify any misleading anomalies within urban 

and village areas. This involved the use of thematic maps created from online imagery, such as digitized 

representations of built-up areas, to accurately determine urban and village regions. Furthermore, a geological 

map was instrumental in providing context for these geothermal areas. Throughout our study, we successfully 

identified anomalous areas where LSTs were consistently 3–6 K higher than the surrounding background 

temperatures. Based on Brehme et al. (2019) and Siahaan et al. (2005), nine geothermal anomalous identified 
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as surface manifestation areas including fumaroles (M2, M11 and M17), springs, and other manifestation on 

Mean LST, including M1, M2, M3, M4, M11, M13, M15, M16, and M17 (Figure 5). 

 

 
Figure 5 Highlighted areas with unusual LST, delineated by red and irregular boundaries 

 

CONCLUSION 

In summary, the utilization of GIS analysis proves effective in the detection and exclusion of false 

anomalies associated with urban and village areas. Furthermore, the integration of thematic and geological 

maps greatly enhances our ability to interpret geothermal anomalies with precision. The identification of 

geothermal regions is based on a thorough analysis, merging geothermal mechanisms with a comprehensive 

regional geological investigation. These findings robustly demonstrate a close association between the 

distribution of geothermal areas and the presence of faulted structures within our study area. 

The combined analysis of daytime and nighttime LSTs through superimposition effectively mitigates the 

impact of solar radiation-induced cooler thermal anomalies associated with land cover. This methodology has 

demonstrated successful application in geothermal exploration within the geothermal anomaly zone of 

Lahendong, North Sulawesi. The outcomes affirm that the integration of daytime and nighttime TIR remote 

sensing represents a highly efficient approach for geothermal detection, offering the additional advantage of 

cost reduction in geothermal exploration efforts. Thus, nine geothermal anomalies areas were successfully 

extracted.  
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