The relationship between air pollutants and COVID-19 cases and large-scale social restriction’s impact on the air quality in Jakarta, Indonesia

Muhammad Rendana*, Leily Nurul Komariah*

*Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya, Indralaya, 30662, Indonesia
[+62 81379895949]

Abstract. World Health Organization (WHO) has announced that COVID-19 is a global pandemic and public health emergency. COVID-19 was an infectious disease, and it could remain viable in ambient air for hours. Therefore, this study examines the correlation between air pollutants (PM2.5, PM10, CO, SO2, NO2, and O3) and COVID-19 spread in Jakarta, Indonesia. Also, it evaluates the impact of large-scale social restriction (LSSR) on the air pollution index (API). The air pollutant and COVID-19 data were investigated in three different periods; in 2019, before LSSR, and during LSSR periods. The correlation analysis between air pollutant and COVID-19 cases were analyzed using Spearman correlation test. The study found that the air pollution index of PM2.5, PM10, CO, SO2 and NO2 decreased by 9.48%, 15.74%, 29.17%, 6.26%, and 18.34% during LSSR period. While O3 showed an increase of 4.06%. Another result also found significant positive correlations of SO2, CO, and PM2.5 with COVID-19 cases. Exposure to SO2, CO and PM2.5 has driven the area to become vulnerable to COVID-19 infection. Our findings indicated that the relationship between air pollutants and COVID-19 spread could provide a new notion for precaution and control method of COVID-19 outbreak.

How to cite (CSE Style 8th Edition):

INTRODUCTION

The 2019 novel coronavirus disease (COVID-19) is one of the coronaviruses family that announced a public health emergency in 2020 (Shereen et al., 2020). The COVID-19 has firstly appeared in Wuhan city, China, after a resident from that area suffered respiratory infections and pneumonia cases in December 2019 (Sohrabi et al., 2020). A week later, the virus has spread worldwide and caused many cases and deaths. On March 11 2020, World Health Organization (WHO) declared the COVID-19 outbreak as a global pandemic. Until February 2021, the COVID-19 cases had spread in over 100 countries, and total cases and deaths around the world were over 115 million and 2.5 million, respectively (World Health Organization, 2021). In Indonesia, the highest total cases were found in Jakarta, with total cases COVID-19 was 339 735 and the death cases were 5 464 (Ministry of Health Indonesia, 2021). The government has implemented several policies such as social distancing, self-quarantine, and large-scale social restriction (LSSR) to respond to high city cases.
Many studies have been carried out to analyze any prominent factors contributing to the spread of COVID-19. Several studies found that the COVID-19 could transmit through direct contact human-to-human and respiratory droplets (Huang et al., 2020, Li et al., 2020). Also, climate factors are tightly associated with the COVID-19 pandemic (Ma et al., 2020). Furthermore, recent studies investigated the impact of the lockdown phase on air quality (Nakada and Urban, 2020; Tobias et al., 2020). Mahato et al. (2020) reported that the concentrations of PM10 and PM2.5 had reduced more than 50% during the lockdown. According to Filonchyk et al. (2020), good air quality only occurred in the short term. When fossil fuel combustion at power plants and factories started to operate again, the air quality would decrease again. The concentration of NO₂ and CO had the most significant decrease based on their study.

Previous studies have discussed that ambient air pollutants have an essential role in contributing to the high respiratory infection ratio by making people more vulnerable to the virus (Xie et al., 2019). WHO also reported, annually seven million die because of fine particles in the polluted air condition (Bashir et al., 2020). Because the COVID-19 can remain viable in the air for multiple hours and affects human’s respiratory system (Van Doremalen et al., 2020), therefore, air pollutants can be a reliable indicator to identify virus spread. In this study, we aimed to examine the impact of large-scale social restriction (LSSR) on the air pollution index (API) and also investigate the correlation between air pollutants (PM2.5, PM10, SO₂, NO₂, CO, and O₃) and COVID-19 cases in Jakarta, Indonesia.

MATERIALS AND METHODS

Jakarta is the administration, social and political center of Indonesia, with a current population of over 10 million in 2019. It is geographically located between 6°12’ S and 106°48’ E (Fig. 1). Jakarta has been an epicenter of the COVID-19 outbreak in Indonesia since it had the highest COVID-19 cases. Daily air pollution index (API) data such as SO₂, NO₂, PM10, PM2.5, CO, and O₃ were obtained from the Department Environment of Jakata, while COVID-19 cases data from the Department Health of Jakarta (publicly available at https://corona.jakarta.go.id). The data were quantitative type and readily in excel dataset. The acquisition date of data for this study was chosen from March 1 to April 30, 2020. To know the impact of quarantine period on air pollution index, this study was divided into two periods of analyses, before large-scale social restriction (LSSR) started from March 25-April 6 2020, and during LSSR began in April 10-April 23, 2020.

Moreover, tropospheric NO₂ concentration over Jakarta was analyzed by OMI on NASA’s Aura satellite which was retrieved from NASA’s open data portal (https://giovanni.gsfc.nasa.gov/giovanni). The tropospheric NO₂ concentration was evaluated in three different periods, such as in the 2019 year, before, and during LSSR in 2020. The evaluation of NO₂ level from remote sensing data has been widely used in many studies and showed a satisfactory result (Biswal et al., 2020; Silvern et al., 2019). In this study, we would generally obtain a higher reduction of NO₂ from remote sensing data because it covered a large area coverage. It also detected the concentration of pollutants in a column atmosphere. While the ground level of air quality measurement only analyzed the ambient air pollutant concentration in a lower coverage area. In addition, Spearman correlation test was used of analyze the correlation of air pollutants with the COVID-19 cases in the study area. All statistical analyses were analyzed using IBM SPSS Statistics Version 21 (Verma, 2012).
RESULTS AND DISCUSSION

Air Pollution Index (API) in Jakarta during COVID-19 Pandemic

The study’s result showed the alteration of the air pollution index in Jakarta using large-scale social restriction (LSSR) to prevent COVID-19 spread. The LSSR from April to June 2020 resulted in a marked reduction in NO₂ in Jakarta by 18.34% (Table 1). This reduction was comparable with the decrease in tropospheric NO₂ columns that also investigated using satellite data (Fig. 2). The reduction in NO₂ could be associated with the decrease in city traffic density in Jakarta during the COVID-19 pandemic. Moreover, the air pollution index of PM10 and PM2.5 have been reduced by 15.74% and 9.48%, respectively (Table 1). It showed the major of primary aerosol was more PM10 and smaller content of PM2.5 (Seinfeld and Pandis, 2016). The percentage reductions of PM10 and NO₂ were observed more in urban areas.

Furthermore, PM2.5 and SO₂ indicated smaller decreases, while NO₂, CO, and PM10 showed much higher decreases. This occasion means that the traffic emission contributed to a higher decline than industrial sources such as oil refineries, power plants, petrochemical plants, and food processing facilities. In contrast, the simultaneous decline of NOx and PM2.5 is attributed to the rise of O₃ in Jakarta, with a higher rate by 4.06%. Li et al. (2019) explained the increase of O₃ could occur when the atmosphere has less NO to react with O₃ molecules.

Our results have compared atmospheric pollutants in other regions of the world during the lockdown period. For instance, Lia et al. (2020) found NO₂ has been reduced in Wuhan, China (53.3%), but O₃ was obtained increasing significantly (116.6%) during city lockdown. Another similar result was also reported by Menut et al. (2020), who found a decrease in NO₂ (30-50%) in all western European countries. Chen et al. (2020) found there were significant reductions for NO₂ (49%) and CO (37%) over the United States. In the South Asia region, a study by Singh et al. (2020) investigating 134 sites across India obtained a decrease in PM2.5 (40-60%), PM10 (30-70%), and NO₂ (20-40%) during the lockdown. The percentage reductions of PM2.5, PM10, and NO₂ were proportional to the population density. In addition, Abdullah et al. (2020a) revealed PM2.5 in Northern Malaysia showed the highest decrease during the Movement Control Order.
(MCO), with 23.7%. If we compared it with our study, the percentage reduction was much higher than our study. However, the decline was related to the COVID-19 control measure, and it can be affected by environmental factors like geographical and meteorological conditions.

Table 1 The average air pollution index (API) of CO, NO2, O3, SO2, PM10, and PM2.5 in Jakarta

<table>
<thead>
<tr>
<th>Air Pollutant (API)</th>
<th>Before LSSR</th>
<th>During LSSR</th>
<th>Percentage Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>26.12</td>
<td>18.50</td>
<td>-29.17</td>
</tr>
<tr>
<td>NO2</td>
<td>10.25</td>
<td>8.37</td>
<td>-18.34</td>
</tr>
<tr>
<td>O3</td>
<td>58.25</td>
<td>60.62</td>
<td>+4.06</td>
</tr>
<tr>
<td>SO2</td>
<td>25.87</td>
<td>24.25</td>
<td>-6.26</td>
</tr>
<tr>
<td>PM10</td>
<td>69.87</td>
<td>58.87</td>
<td>-15.74</td>
</tr>
<tr>
<td>PM2.5</td>
<td>91.0</td>
<td>82.37</td>
<td>-9.48</td>
</tr>
</tbody>
</table>

Spatial Variation of Tropospheric NO2 Concentration in Jakarta

The concentration of tropospheric NO2 was evaluated before and during the large-scale social restrictions (LSSR) period and 2019 year data (Fig. 2). The mean tropospheric NO2 level before the LSSR period was 405×10^13 molecule cm^-2 and reduced by 36.8% during the LSSR period (Fig. 2b). The tropospheric NO2 concentrations in 2020 were also compared with the 2019 year data. The mean tropospheric NO2 during the LSSR was 256×10^13 molecule cm^-2 (Fig. 2c). There was a significant increase in tropospheric NO2 in Jakarta that was 420×10^13 molecule cm^-2 in 2019 (Fig. 2a). The findings concluded that restrictions on anthropogenic activities such as industrial and transportation contributed to reducing NO2 levels in the study area. Kanniah et al. (2020) noted in South East Asia, including Jakarta, there was also a marked decrease (27-30%) in tropospheric NO2. They explained that anthropogenic activities like seasonal biomass burning had less impact on tropospheric NO2 variation over this region during the lockdown phase. In Jakarta, the highest reduction of NO2 concentrations was observed in industrial and urban areas across the city.

The Relationship between Air Pollutants and COVID-19 Cases

This study used Spearman correlation test to analyze the relationship between COVID-19 cases and air pollutants. The air pollutant data used in this analysis were taken from March to May 2020 during the COVID-19 pandemic. We revealed a significantly positive relationship of SO2, CO, and PM2.5 with COVID-19 cases (Table 2). These outputs become evidence that air pollutants were a prominent factor in COVID-19 transmission. We compared our results with other studies to obtain a better understanding of the association between these variables. Yongjian et al. (2020) found a higher CO exposure in a short-term period could contribute to more COVID-19 cases. The study explained that 1 mg/m^3 rise in CO concentration could contribute to a 15.19% rise in COVID-19 cases. A literature review also discovered a positive relationship between SO2 concentration and COVID-19 cases (Cole et al., 2020). Chen et al. (2007) reported higher CO, SO2, and NO2 exposures were unsafe to human health and closely related to respiratory infection. Also, high air pollutants could intensify the risk of being infected by the COVID-19 virus (Rushayati et al., 2020). Cole et al. (2020) reported an one-unit increase in PM2.5 concentrations was related to 9.4 more COVID-19 cases in the Netherlands. Similar results found by Zoran et al. (2020) and Fattorini and Regoli (2020) who obtained COVID-19 cases, were positively correlated with PM2.5 in Italy. The PM2.5 was also the environmental driver of the COVID-19 outbreak in China (Yao et al., 2020). There was about a 2.24% increase in COVID-19 cases when PM2.5 concentrations increase by 10 μg/m^3 (Yongjian et al., 2020). Overall, our results in the case of Jakarta were similar to the previous studies.
To support our results, we have conducted a correlation test between air quality data and environmental factors. We found significant associations of SO$_2$ and CO with temperature in study area with $r = -0.344$; $p < 0.05$ and $r = -0.318$; $p < 0.05$, respectively (Table 3). Many studies have agreed temperature was closely linked to COVID-19 cases (Sahin, 2020). We could assume that the concentrations of SO$_2$ and CO in ambient air due to temperature influence also had the same impact on COVID-19 cases. The air quality index could affect the COVID-19 cases in the temperature range of 10-20°C and low relative humidity (Xu et al., 2020). There was a significant association between weather, wind speed, and COVID-19 spread. Warmer weather would help depress the lifespan of the virus (Guo et al., 2020; Rendana et al., 2020). A high-
temperature condition could contribute to an increased PM2.5 concentration (Abdullah et al., 2020b). Yao et al. (2020) reported a higher PM2.5 concentration leads to more COVID-19 cases in China.

Furthermore, Huang et al. (2018) have explained if the annual temperature and gross domestic product of industry in China increase by 1%, the PM2.5 concentration would also increase by 35.7 and 29.1%, respectively. The fluctuation of PM2.5 concentration could be evaluated using the Deep Blue and the combined Dark Target and Deep Blue retrieval algorithm from MODIS data collection products. This technique had high accuracy and low root-mean-square error based on the study by Filonchyk and Hurynovich (2020) in China and Eastern Europe.

Table 3 The association between climate factors and air pollutants during COVID-19 pandemic

<table>
<thead>
<tr>
<th>Parameter</th>
<th>PM2.5</th>
<th>SO2</th>
<th>CO</th>
<th>NO2</th>
<th>O3</th>
<th>PM10</th>
<th>T</th>
<th>RH</th>
<th>P</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM2.5</td>
<td>1</td>
<td>-0.133</td>
<td>0.528**</td>
<td>0.571**</td>
<td>0.491**</td>
<td>0.174</td>
<td>0.313*</td>
<td>-0.233</td>
<td>-0.499**</td>
<td>0.465**</td>
</tr>
<tr>
<td>SO2</td>
<td>-0.125</td>
<td>1</td>
<td>0.226</td>
<td>-0.007</td>
<td>-0.029</td>
<td>0.168</td>
<td>-0.344*</td>
<td>0.221</td>
<td>0.353*</td>
<td>0.118</td>
</tr>
<tr>
<td>CO</td>
<td>0.528</td>
<td>0.226</td>
<td>1</td>
<td>0.564**</td>
<td>0.201</td>
<td>0.163</td>
<td>-0.318*</td>
<td>-0.170</td>
<td>-0.244</td>
<td>-0.433*</td>
</tr>
<tr>
<td>NO2</td>
<td>0.571**</td>
<td>-0.007</td>
<td>0.564**</td>
<td>1</td>
<td>0.401*</td>
<td>0.038</td>
<td>0.178</td>
<td>-0.261</td>
<td>-0.094</td>
<td>-0.426*</td>
</tr>
<tr>
<td>O3</td>
<td>0.491**</td>
<td>-0.029</td>
<td>0.201</td>
<td>0.401*</td>
<td>1</td>
<td>0.329</td>
<td>0.302</td>
<td>-0.236</td>
<td>-0.413*</td>
<td>-0.165</td>
</tr>
<tr>
<td>PM10</td>
<td>0.174</td>
<td>0.168</td>
<td>0.163</td>
<td>0.038</td>
<td>0.329</td>
<td>1</td>
<td>-0.266</td>
<td>0.248</td>
<td>0.357</td>
<td>-0.228</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed)

Correlation is significant at the 0.05 level (2-tailed)

T= Temperature, **RH**= Relative humidity, **P**= Precipitation, **W**= Wind speed

CONCLUSIONS

This study concluded PM2.5, SO2, and CO were important factors in COVID-19 spread. These air pollutants were also closely associated with climate factors such as temperature, precipitation, and wind speed. The reduction of major air pollutants was observed during the LSSR period, but it might not solely depend on social control policy. Thus further studies need to examine other influencing factors that may relate to COVID-19 spread.

ACKNOWLEDGEMENTS

The author would like to thank the Jakarta Environmental Agency and Health Agency for providing air quality and COVID-19 cases data.

REFERENCES

