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Abstract. Wildfires threaten the environment not only at local scales, but also at wider scales. Rapid monitoring system to detect 
active wildfires has been provided by satellite remote sensing technology, particularly through the advancement on thermal 

infrared sensors. However, satellite-based fire hotspots data, even at relatively high temporal resolution of less than one-day revisit 

period, such as time series of fire hotspots collected from TERRA and AQUA MODIS, do not tell exactly if they are fire ignitions 

or fire escapes, since other factors like wind, slope, and fuel biomass significantly drive the fire spread. Meanwhile, a number of 
biophysical fire simulation models have been developed, as tools to understand the roles of biophysical factors on the spread of 

wildfires.  Those models explicitly incorporate effects of slope, wind direction, wind speed, and vegetative fuel on the spreading 

rate of surface fire from the ignition points across a fuel bed, based on either field or laboratory experiments.  Nevertheless, none 

of those models have been implemented using real time fire data at relatively large extent areas. This study is aimed at 
incorporating spatially explicit time series data of weather (i.e. wind direction and wind speed), remotely sensed fuel biomass and 

remotely sensed fire hotspots, as well as incorporating more persistent biophysical factors (i.e. terrain), into an agent-based fire 

spread model, in order to identify fire ignitions within time series of remotely sensed fire hotspots. 
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1. Introduction 

1.1. Background 

Recently, the awareness of the wetland ecosystem 

change in tropical regions has increased considerably, 

especially in highly sensitive/vulnerable areas such as 

peat swamp area. Improving the understanding of 

forest landscapes through its interaction with climate, 

ecosystem processes, and biodiversity is an essential 

research challenge to the deforestation and forest 

degradation issue (Page et al., 2010; Achard et al, 

2002), including the restoration of degraded peatland 

by forest fire. The Bonn Challenge is a global effort to 

restore 150 million hectares of the world's degraded 

and deforested lands by 2020 (IUCN, 2014). 

Therefore, Indonesia is keen to collaborate with the 

Bonn Challenge because the program is in line with 

government’s program in terms of conservation, 

rehabilitation and ecosystem restoration in degraded 

forests or primary forests and peatlands.  

Wildfires threaten the environment not only at local 

scales, but also at wider scales. Wildfires from forests 

and peatlands over Southeast Asia during September to 

October 2015 were estimated to release CO2 at 

emission rate of about 11.3 Tg CO2 per day, exceeded 

CO2 emitted from fossil fuel combustion in European 

Union (EU28) of about 8.9 Tg CO2 per day (Huijnen, 

et al., 2016). 

Peatlands are complex systems that reflect their 

geographical and ecological setting. Their 

characteristics and its changes are the results of 

interactions between socio-economic and cultural 

conditions, biophysical constraints and land use history 

(Cole et al., 2015). Development and stability of 

peatlands are determined as interactions between 

different land use/cover types, hydrological setting and 

spatial elements of the landscape (Evans and Moran, 

2002).  

The importance of tropical peatlands (tropical peat 

swamp lands) on the global carbon cycle and 

ecosystems has been studied by many researchers, such 

as changes in its ecological function (Archard, 2002) 

and declining in biodiversity through land conversion 

(Myers et al., 2000). Moreover, wildfires from forests 

and peatlands over Southeast Asia during September to 

October 2015 were estimated to release CO2 at 

emission rate of about 11.3 Tg CO2 per day, ex-ceeded 

CO2 emitted from fossil fuel combustion in European 
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Union (EU28) of about 8.9 Tg CO2 per day (Huijnen, 

et al., 2016). 

Rapid monitoring system to detect active wildfires 

has been provided by satellite remote sensing 

technology, particularly through the advancement on 

thermal infrared sensors (Giglio, et al., 2016; Kuenzer, 

et al., 2016; Panda, et al, 2016; Schroeder, et al., 2016). 

However, satellite-based fire hostspots data, even at 

relatively high temporal resolution of less than one-day 

revisit period, such as time series of fire hotspots 

collected from TERRA and AQUA MODIS (Kuenzer, 

et al., 2016), do not tell exactly if they are fire ignitions 

or fire escapes, since other factors like wind, slope, and 

fuel biomass significantly drive the fire spread (Balbi, 

et al., 2007; Balbi, et al., 2010; Mandel, et al., 2014; 

Monedero, et al., 2017; Morandini, et al., 2014). Thus, 

law enforcement efforts in order to mitigate severe 

environmental impacts due to wildfires through 

punishment mechanism to the combustion actors (e.g. 

Fajri, 2016), often hard to provide convincing evidence 

based on time series of remotely sensed fire hotspots 

per se, whether fire hotspots detected within the 

responsible area of suspects are truly ignited by the 

suspects or in fact escaped from the neighboring areas. 

Meanwhile, a number of biophysical fire simulation 

models have been developed, as tools to understand the 

roles of biophysical factors on the spread of surface 

wildfires (Balbi, et al., 2007; Balbi, et al., 2010; Mandel, 

et al., 2014; Morandini, et al., 2014).  Those models 

explicitly incorporate effects of slope, wind direction, 

wind speed, and vegetative fuel on the spreading rate of 

surface fire from the ignition points across a fuel bed, 

based on either field or laboratory experiments.  Most 

recently, Monedero, et al. (2017) develop a conceptual 

model to trace back fire ignition points of a given 

perimeter of final fire.  Nevertheless, none of those fire 

models have been implemented using real time fire data 

at relatively large extent areas. 

Moreover, with regards to wildfires on peatlands, 

which spread is not only determined by aboveground 

biomass fuel on the surface, but also determined by 

belowground biomass fuel on the sub-surface within 

peat layers, Condro (2017) developed a three-

dimensionally explicit model of peatland hydrology, 

capturing wetness or dryness of peat layers due to 

hydro-dynamics processes in daily time-step, thus, 

applicable to explore fire spread within the sub-surface. 

Regardless of the debate on the different 

methodology of forest fire control resulted in under 

estimation figure, the decrease of forest cover in 

Sumatran peat swamp is obvious and needs immediate 

response. Spatial modeling of fire spread and fire 

ignition will assist the policy makers to understand the 

process and to consider it when decisions are made. The 

fire spread modelling in Sumatra by using spatial 

modelling tool can be used as data input to solve 

environmental problem resulted from forest fire, such 

as smoke disaster. 

 

1.2. Objective 

Due to incorporating spatially explicit time series 

data of weather, remotely sensed fuel biomass and 

remotely sensed fire hotspots, as well as incorporating 

more persistent biophysical factors (e.g. terrain and 

physical peat properties), into an agent-based fire 

spread model, the objectives of research are 1) to 

develop fire spread model; and 2) to identify fire 

ignitions within time series of remotely sensed fire 

hotspots using the model, in order to develop simple 

criteria and indicators of fire risk for decision makers. 

2. Methodology 

2.1. Study site 

This research will be conducted in a forest 

concession (permit for carbon sequestration conces-

sion) in South Sumatra. The area is managed by Global 

Alam Lestari – PT. GAL, which has ex-perienced 

widespread fire events in 2015 (Figure 3). Figure 1 

shows the research site (PT. GAL) (right figure) and 

spatial distribution of fire hotspots in Sumatra 

throughout September 2015 (yellow) and October 2015 

(red) detected using TERRA/AQUA MODIS imageries 

at confi-dence level of ≥ 80% (left figure). We selected 

this specific site as it has a wide range of fire se-verity 

levels in South Sumatra. 

 
 

 

 

 
 

 

 

 
 

 

 

 
Figure 1 Study site 

2.2. Data 

There are two data types used for parameterizing the 

model: spatial and tabular. Tabular data consist of: (i) 

meteorological parameters, (ii) peat parameters, and 

(iii) land cover parameters. Spatial data consist of: (i) 

land cover map, classified from Landsat 8 imagery of 

path/row 125/61 with acquisition date of September 

10th 2017, (ii) digital elevation model (DEM) based on 

SRTM, and (ii) peat thickness map, based on surface 

interpolation of ground measurement points. In this 

case, the spatial data were resampled into 30-m. Data 

used in this study detail is provided in Table 1.  
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Table 1. Data used in this study 

No. Category Data 
Temporal 

resolution 
Spatial resolution Source 

1 Fire properties Fire hotspots < 1 day 1 km 
TERRA/AQUA MODIS Fire 

Products 

2 Surface properties DEM - 30 m SRTM or Aster 

3 Surface properties Biomass fuel 16 days 0.2 km MODIS EVI 

4 Surface properties River - Scale 1:50,000 
Indonesian Geospatial 

Information Agency 

5 Surface properties 
Land cover 

maps 
1 year 30 m – 1 km Landsat 8 or  MODIS 

6 Weather/climate properties 
Wind direction 

and wind speed 
6 hours 0.125° 

European Centre for Medium-

Range Weather Forecasts 

https://www.ecmwf.int/ 

7 Weather/climate properties Rainfall 1 day 5.5 km 

Climate Hazards Group 

InfraRed Precipitation with 

Stations (CHIRPS) 

http://iridl.ldeo.columbia.edu/ 

8 Weather/climate properties 

Potential 

evapotranspirati

on 

1 day (0.925 km) 

Available weather stations or 

remotely sensed estimation (e.g. 

WorldClim 

http://worldclim.org/version2) 

 

2.3. Data Analysis 

Most of available land cover maps are determined by 

applying single-date satellite imagery, which was 

necessarily coincident with temporarily cover types, 

such as barren land. IN this work, we will explore 250 

m multi-temporal MODIS EVI 16-day composite data 

year 2015-2016 to characterize the vegetation 

dynamics of the peatlands in Java. Although an issue 

about the availability of sufficient quality of data sets 

had been arising out of the time-series analysis of 

MODIS, but we will use the filtered dataset by wavelet 

function in order to identify and reduce the overall 

noise so as not to lose useful information from the time 

series data (Setiawan, et al. 2011). 

In general, the activities will develop a 2D fire model 

that simulates fire spread on surface only, and a 3D fire 

model that simulates fire spread either on surface or 

sub-surface.  The models will be developed using 

agent-based modelling tool – NetLogo (Wilensky, 

1999).  Temporal resolution of the model is 6 hours, 

with 2D spatial resolution 1 km2 and 3D spastial 

resolution 1 km2 x 0.1 m. Actual fire hotspots at time t 

will be simulated using the model for Δt time period.  

Simulated fires at time t + Δt will be compared with 

actual fire hotspots at time t + Δt.  If actual fire hotspots 

are nearby the paths of simulated fires, then it is most 

likely that the actual fire hotspots are fire escapes.  

Otherwise, actual fire hotspots are most likely new fire 

ignitions. 

 

 
Figure 2. Flowchart data analysis 

 

3. Results and Discussion 

3.1. Development of Surface Fire Model 

In general, the activities will develop a 2D fire model 

that simulates fire spread on surface only, and a 3D fire 

model that simulates fire spread either on surface or 

sub-surface.  The models will be developed using 

agent-based modelling tool – NetLogo (Wilensky, 

1999).  Temporal resolution of the model is 6 hours, 

with 2D spatial resolution 1 km2 and 3D spastial 

resolution 1 km2 x 0.1 m. Actual fire hotspots at time t 

will be simulated using the model for Δt time period.  

Simulated fires at time t + Δt will be compared with 

actual fire hotspots at time t + Δt.  If actual fire hotspots 

are nearby the paths of simulated fires, then it is most 

https://www.ecmwf.int/
http://iridl.ldeo.columbia.edu/SOURCES/.UCSB/.CHIRPS/.v2p0/.daily/
http://worldclim.org/version2
http://worldclim.org/version2
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likely that the actual fire hotspots are fire escapes.  

Otherwise, actual fire hotspots are most likely new fire 

ignitions. Currently, the model of surface fire was 

developed based on fire spread velocity using the 

equation adopted from Morandini, et al. (2014) and 

Mandel, et al. (2014) as follows: 

 

((0.0002 * slope) + 0.0089) + wind speed 

 

To evaluate the model behavior, the preliminary 

results of the model can be seen in Figure 3, Figure 4, 

and Figure 5. 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

Figure 3. Fire events with duration from 02-Sep-2015, 
06:00:00 to 12:00:00 (6 hours). 

 

Red triangles indicate MODIS fire hotspots on 02-

Sep-2015 at 06:00:00, black triangles indicate MODIS 

fire hotspots on 02-Sep-2015 at 12:00:00, yellow 

triangles indicate simulated fire spread, and orange 

lines indicate path of simulated fire spread. In this case, 

all fire hotspots on 02-Sep-2015 at 12:00:00 (black 

triangles) were probably fire escapes – spread through 

wind– since the positions were on the path of simulated 

fire spread. 
 

 

 
 

 

 

 
 

 

 

 
 

 

 
 

 

 

 
Figure 4. Fire events with duration from 09-Sep-2015, 

06:00:00 to 10-Sep-2015, and 00:00:00 (18 hours) 

Red triangles indicate MODIS fire hotspots on 09-

Sep-2015 at 06:00:00; black triangle indicate MODIS 

fire hotspots on 10-Sep-2015 at 00:00:00, yellow 

triangles indicate simulated fire spread, and orange 

lines indicate path of simulated fire spread. In this case, 

few fire hotspots on 10-Sep-2015 at 00:00:00 (black 

triangles within red circle) were probably fire ignitions, 

otherwise most of them were probably fire escapes – 

spread through wind. 

 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

Figure 5. Fire events with duration from 10-Sep-2015, 
00:00:00 to 12:00:00 (12 hours) 

 

Red triangles indicate MODIS fire hotspots on 10-

Sep-2015 at 00:00:00, black triangles indicate MODIS 

fire hotspots on 10-Sep-2015 at 12:00:00, yellow 

triangles indicate simulated fire spread, and orange 

lines indicate path of simulated fire spread. In this case, 

most of fire hotspots on 10-Sep-2015 at 12:00:00 were 

probably fire ignitions, otherwise few of them (close to 

orange lines) were probably fire escapes – spread 

through wind. 

Some of biophysical fire simulation models have 

been developed in three provinces in Sumatra Island 

(Riau, Jambi, and South Sumatra) during July-October 

2015 as tools to understand the roles of biophysical 

factors on the spread of surface wildfires. Those models 

explicitly incorporate effects wind direction and wind 

speed. Optimized hotspot analysis with confidence 

level over 90% in collaboration with the wind direction 

and speed in Riau, Jambi, and South Sumatra during 

July – October 2015 can be seen in Figure 7, Figure 8, 

and Figure 9 respectively. 
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Figure 6. Optimized hotspot analysis with confidence level over 90% in collaboration with the wind direction and speed in Riau 

during July – October 2015 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Optimized hotspot analysis with confidence level over 90% in collaboration with the wind direction and speed in South 

Sumatra during July – October 2015 

 

 

3.2. Survey Location: PT Global Alam Lestari (PT 

GAL) 

PT GAL is a forest concession rights established in 

2013 and located in the tropical peat swamp forest of 

Merang-Kepayang, South Sumatra, Indonesia. PT GAL 

is located in Bayung Lencir Subdistrict, Musi 

Banyuasin Regency, South Sumatra Province and the 

entire area stands on 22,280 hectares of peatland. Peat 

depth in PT GAL ranges from 1-8 meters (average 4 

meters). 

PT GAL was established for several strategic targets, 

including: 

1. Improving the quality of peat swamp forest 

2. Maintenance and / or increase in carbon stock 

volume in peat swamp forest areas 

3. Reducing the level of deforestation and forest 

degradation 

4. Increased participation and empowerment of 

communities around the forest 

5. Research and development 
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6. Infrastructure Development and Management of 

Peat Water 

7. Selected Flora Habitat Restoration 

8. Inventory of Forest Stand and Carbon Reserves 

9. Collection of Survey Data 

But its main purpose is to optimize the utilization 

and manage the production forests through organizing 

forest carbon in order to manage sustainable forest and 

mitigate the climate change.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Survey activity in PT GAL April 2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Monthly hotspot fire event on 2015 based on 

visual interpretation over study area 

 

At the location, there are several infrastructure 

facilities to support various activities such as camps, 

guard posts, boats, motorized vehicles, and firefighters. 

PT GAL routinely carries out various activities to 

prevent the illegal logging, nurseries, environmental 

services such as extinction and prevent forest and land 

fires, research, peat hydrology surveillance, forest 

development, water management with drones, channel 

blocking, planting, carbon accounting, and local 

community empowerment. 

3.3. Multispectral UAV Based Analysis 

Aerial data has been collected by using Unmanned 

Aerial Vehicle (UAV) or drone over the study area. The 

drone was equipped with a multispectral camera (green, 

red, red edge, and near infrared or NIR). The objective 

of collecting this aerial data was to relate the event of 

fire that happened on 2015 to the characteristic of 

vegetation covering the burned area. This data will be 

valuable for further model development in the next 

stage. 

There are two Area of Interest (AOI) for aerial data 

collection. The areas were selected based on 2015 fire 

event.  

1. AOI 1: Area which were not burned on 2015 fire 

event. 

2. AOI 2: Area which were burned on 2015 fire event. 

 

 
Figure 10. True color composite (RGB) over AOI 1 

 

 
Figure 11. NDVI map over AOI 1. The value ranged from -

0.0677 to 0.9773 

 

 
Figure 12. True color composite (RGB) over AOI 2 
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Figure 13. NDVI map over AOI 2. The value ranged from 

0.1774 to 0.9428 

4. Conclusions 

Wildfires threaten the environment not only at local 

scales, but also at wider scales. Rapid monitoring 

system to detect active wildfires has been provided by 

satellite remote sensing technology, particularly 

through the advancement on thermal infrared sensors. 

However, satellite-based fire hotspots data, even at 

relatively high temporal resolution of less than one-day 

revisit period, such as time series of fire hotspots 

collected from TERRA and AQUA MODIS, do not tell 

exactly if they are fire ignitions or fire escapes, since 

other factors like wind, slope, and fuel biomass 

significantly drive the fire spread.  

Meanwhile, a number of biophysical fire simulation 

models have been developed, as tools to understand the 

roles of biophysical factors on the spread of wildfires.  

Those models explicitly incorporate effects of slope, 

wind direction, wind speed, and vegetative fuel on the 

spreading rate of surface fire from the ignition points 

across a fuel bed, based on either field or laboratory 

experiments.  Nevertheless, none of those models have 

been implemented using real time fire data at relatively 

large extent areas. This study is aimed at incorporating 

spatially explicit time series data of weather (i.e. wind 

direction and wind speed), remotely sensed fuel 

biomass and remotely sensed fire hotspots, as well as 

incorporating more persistent biophysical factors (i.e. 

terrain), into an agent-based fire spread model, in order 

to identify fire ignitions within time series of remotely 

sensed fire hotspots 
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