Penilaian Risiko Semikuantitatif Logam Berat pada Ikan Salmon di Jabodetabek Semi-Quantitative Risk Assessment of Heavy Metals in Salmon Distributed in Jabodetabek

Nindya Hambar Wasisto, Wini Trilaksani, Iriani Setyaningsih

Abstract

Salmon imports continue to rise, while there were indications in some waters of the salmon's origin country that is a potential danger of heavy metals contamination. This phenomenon raises awareness regarding the food safety of salmon consumption, therefore a risk assessment is crucial to be conducted. The purposes of this study were to determine the content of Hg, Pb, and Cd in salmon meat and to assess the risk of heavy metals in salmon consumption in Jabodetabek area. Salmon fish, 132 in total was randomly taken from Tanjung Priok Port, the heavy metal analysis used the Flameless Inductively Coupled Plasma Mass Spectrometry instrument, risk assessment based on the United States Environmental Protection Agency method and risk ranger based on Ross and Sumner, supported by systematic literature review and questionnaires. The heavy metals Hg, Pb, and Cd in salmon were detected at 0.0646±0.0056, 0.0505±0.0446, and 0.0119±0.0006 ppm, respectively, indicating that there were still below the thresholds set by Food and Drug Supervisory Agency of the Republic of Indonesia (0.5;0.2;and 0.1 ppm). The results of the semi-quantitative risk assessment for Hg, Pb, and Cd were 0.0567, 0.0013, and 0.0010 (less than 1) implying that salmon consumption have no a potential risk of hazard. However heavy metals are accumulated in human body, hence, the diet consumption analysis needed to be performed. The risk ranger showed that the estimated risk ranking of heavy metals was in the medium category. Based on the results, it can be concluded that imported and consumed salmon by Jabodetabek residents was still relatively safe.

References

[AOAC] Association of Official Analytical Chemist. 2000. Official Methods of Analysis 17th. Mayland (US): AOAC Inc.
[BSN] Badan Standardisasi Nasional. 2010. Metode pengambilan contoh produk perikanan. SNI 2326:2010. Jakarta (ID): BSN.
[FAO] Food and Agriculture Organization. 2020. The State of World Fisheries and Aquaculture. Rome (IT): FAO.
[Perkaban] Peraturan Kepala Badan Pengawas Obat dan Makanan Republik Indonesia Nomor 5 Tahun 2018 Tentang Batas Maksimum Cemaran Logam Berat dalam Pangan Olahan. 2018.
[USEPA] United States Environmental Protection Agency. 2000. Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories. Volume ke-2. Washington (DC): Office of Science and Technology.
Abdel-Tawwab M, Wafeek M. 2014. Influence of water temperature and waterborne cadmium toxicity on growth performance and metallothionein-cadmium distribution in different organs of Nile tilapia, Oreochromis niloticus (L.). J Therm Biol. 45:157–162. doi:10.1016/j.jtherbio.2014.09.002.
Apriliani T, Deswati R. 2020. Salmon-Trout Import Control Strategies for Domestic Market Consumption.
Atli G, Canli M. 2003. Natural occurrence of metallothionein-like proteins in the liver of fish Oreochromis niloticus and effects of cadmium, lead, copper, zinc, and iron exposures on their profiles. Bull Environ Contam Toxicol. 70(3):619–627. doi:10.1007/s00128-003-0030-4.
Chiesa LM, Pavlovic R, Nobile M, Di Cesare F, Malandra R, Pessina D, Panseri S. 2020. Discrimination between fresh and frozen-thawed fish involved in food safety and fraud protection. Foods. 9(12):1–15. doi:10.3390/foods9121896.
Easton MDL, Luszniak D, Von der Geest E. 2002. Preliminary examination of contaminant loadings in farmed salmon, wild salmon and commercial salmon feed. Chemosphere. 46(7):1053–1074. doi:10.1016/S0045-6535(01)00136-9.
Friesen EN, Higgs DA, Devlin RH. 2015. Flesh nutritional content of growth hormone transgenic and non-transgenic coho salmon compared to various species of farmed and wild salmon. Aquaculture. 437:318–326. doi:10.1016/j.aquaculture.2014.11.035.
IARC. 2012. Arsenic, Metals, Fibers, and Dusts. Volume ke-100. Thomas A, editor. france: the International Agency for Research on Cancer. 1-527.
Kelly BC, Ikonomou MG, Higgs DA, Oakes J, Dubetz C. 2008. Mercury and other trace elements in farmed and wild salmon from British Columbia, Canada. Environ Toxicol Chem. 27(6):1361–1370. doi:10.1897/07-527.1.
Khristoforova NK, Tsygankov VY, Boyarova MD, Lukyanova ON. 2015. Concentrations of trace elements in Pacific and Atlantic salmon. Oceanology. 55(5):679–685. doi:10.1134/S0001437015050057.
Liaset B, Julshamn K, Espe M. 2003. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with ProtamexTM. Process Biochem. 38(12):1747–1759. doi:10.1016/S0032-9592(02)00251-0.
Malde MK, Bügel S, Kristensen M, Malde K, Graff IE, Pedersen JI. 2010. Calcium from salmon and cod bone is well absorbed in young healthy men: A double-blinded randomised crossover design. Nutr Metab. 7:1–9. doi:10.1186/1743-7075-7-61.
Mance G. 1990. Pollution Threat of Heavy Metals in Aquatic Environments. Barking (UK): Elsevier Science Publishers LTD.
Mowi. 2021. Salmon Farming Industry Handbook. Norwegia. p 26.
Nøstbakken OJ, Hove HT, Duinker A, Lundebye AK, Berntssen MHG, Hannisdal R, Lunestad BT, Maage A, Madsen L, Torstensen BE, et al. 2015. Contaminant levels in Norwegian farmed Atlantic salmon (Salmo salar) in the 13-year period from 1999 to 2011. Environ Int. 74:274–280. doi:10.1016/j.envint.2014.10.008.
Pavez J, Silva N, Cornejo-D’ottone M, Rivera C. 2018. Laguna verde bay’s sediments origin and its heavy metals content (Al, Fe, Cu, Mn, Pb, and Hg), valparaíso, Chili. Lat Am J Aquat Res. 46(5):1116–1122. doi:10.3856/vol46-issue5-fulltext-24.
Rani V, Verma M. 2020. Biosensor Applications in the Detection of Heavy Metals, Polychlorinated Biphenyls, Biological Oxygen Demand, Endocrine Disruptors, Hormones, Dioxin, and Phenolic and Organophosphorus Compounds. Environ Chem a Sustain World., siap terbit.
Ross T, Sumner J. 2002. A simple, spreadsheet-based, food safety risk assessment tool. Int J Food Microbiol. 77(1–2):39–53. doi:10.1016/S0168-1605(02)00061-2.
Rua-Ibarz A, Bolea-Fernandez E, Maage A, Frantzen S, Sanden M, Vanhaecke F. 2019. Tracing Mercury Pollution along the Norwegian Coast via Elemental, Speciation, and Isotopic Analysis of Liver and Muscle Tissue of Deep-Water Marine Fish (Brosme brosme). Environ Sci Technol. 53(4):1776–1785. doi:10.1021/acs.est.8b04706.
Siskarin. 2021. Rekapitulasi Data Impor Ikan Salmon. Balai Karantina Ikan Pengendalian Mutu dan Keamanan Hasil Perikanan Jakarta II. Jakarta (ID).
Sivakumar V, Driscoll B, Obenauf R. 2007. Trace Elements in Fish and Fish Oil Supplements. March.
Sumner J, Ross T. 2004. The basics of risk assessment1. Appl Risk Assess Fish Industries.
Utthavi WH, Parwita IGLM, Sentana IWB, Sarja NLAKY. 2019. Pemanfaatan media pemasaran online dan manajemen keuangan bagi usaha kerupuk rambak salmon. Dharmakarya: Jurnal Aplikasi Ipteks untuk Masyarakat. Vol.8:206-209.

Authors

Nindya Hambar Wasisto
ndoysehoy@gmail.com (Primary Contact)
Wini Trilaksani
Iriani Setyaningsih
WasistoN. H., TrilaksaniW., & SetyaningsihI. (2022). Penilaian Risiko Semikuantitatif Logam Berat pada Ikan Salmon di Jabodetabek: Semi-Quantitative Risk Assessment of Heavy Metals in Salmon Distributed in Jabodetabek. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(2). https://doi.org/10.17844/jphpi.v25i2.40550

Article Details