Karakterisasi Kitooligosakarida yang Didepolimerisasi dengan Metode Berbeda dan Kajiannya sebagai Active Film Chito-oligosaccharide Characterization Depolymerized by Different Method and Its Study as Active Film

Muhammad Hauzan Arifin, Nugraha Edhi Suyatma, Dias Indrasti

Abstract

Active film adalah salah satu tren dunia untuk kemasan makanan. Active film seringkali mengandung bahan aktif antimikroba, antioksidan, penangkap oksigen, dan sawar UV untuk membantu menjaga kesegaran makanan. Kitosan merupakan salah satu bahan aktif yang dapat dimanfaatkan sebagai active film. Kitosan memiliki aktivitas antimikroba yang baik tetapi hanya dapat digunakan pada pH rendah. Oleh karena itu, kitooligosakarida/chito-oligosaccharide (COS) yang merupakan oligomer kitosan dengan kelarutan lebih baik berpotensi sebagai alternatif. Penelitian ini bertujuan untuk menentukan karakter COS yang dihasilkan dengan metode depolimerisasi mikrogelombang, ultrasuara, dan kombinasi mikrogelombang-ultrasuara serta menentukan sifat mekanis active film terbaik dari COS yang diproduksi dengan kosentrasi 1,5% dan 2%. COS yang diperoleh berwarna kekuningan dengan nilai viskositas 12-17 cP dan bobot molekul berkisar dari 22,1-29,3 kDa yang nilainya lebih kecil daripada kitosan (>50 kDa). COS yang diproduksi menunjukkan aktivitas antimikroba pada bakteri B. subtilis, S. aureus, dan E. coli. Hasil penelitian menunjukkan bahwa terdapat berat molekul COS yang optimal yang dapat dimanfaatkan sebagai bahan film. COS dengan berat molekul rendah cenderung memiliki sifat mekanis film yang buruk karena ikatan antar-molekulnya lemah. Secara keseluruhan, sifat mekanis terbaik film dicapai pada film COS ultrasuara konsentrasi 2%. Film tersebut memiliki ketebalan 0,25 mm nilai WVTR terendah pada 5,25 g/m2/hari, kekuatan tarik, dan elongasi berturut-turut 5,43 N/mm2 dan 76,7%. Warna film COS yang kekuningan cenderung menyerap sinar UV lebih baik dibandingkan dengan film kitosan.

References

Abdolrahimi M, Seifi M, Ramezanzadeh MH. 2018. Study the effect of acetic acid on structural, optical and mechanical properties of PVA/chitosan/MWCNT films. Chinese Journal of Physics. 56(1):221–230.
Al-Hassan AA, Norziah MH. 2012. Starch-gelatin edible films: Water vapor permeability and mechanical properties as affected by plasticizers. Food Hydrocolloids. 26(1):108–117.
Anggraeni Y, Sulistiawati F, Astria DN. 2016. Pengaruh plasticizer gliserol dan sorbitol terhadap karakteristik film penutup luka kitosan-tripolifosfat yang mengandung asiatikosida. Jurnal Ilmu Kefarmasian Indonesia. 14(2):128–134.
[AOAC] Association of Official Analytical Chemist. 1995. Official Method of Analysis. Washington, DC: The Association of Official Analytical Chemist, Inc.
Arham R, Mulyati MT, Metusalach M, Salengke S. 2016. Physical and mechanical properties of agar based edible film with glycerol plasticizer.International Food Research Journal. 23(4):1669–1675.
[ASTM] American Society for Testing and Materials. 2002. Standard Test Method for Tensile Properties of Thin Plastic Sheeting, D882 02. Philadelphia (US): American Society for Testing and Materials.
[ASTM] American Society for Testing and Materials. 1995. Standard Test Methods for Water Vapor Transmission of Materials, E96-95. Philadelphia (US): American Society for Testing and Materials.
Atma Y, Ramdhani H, Mustopa AZ, Pertiwi M, Maisarah R. 2018. Karakteristik fisikokimia gelatin tulang ikan patin (Pangasius sutchi) hasil ekstraksi menggunakan limbah buah nanas (Ananas comosus). Agritech. 38(1):56-63.
Bao S, Xu S, Wang Z. 2009. Antioxidant activity and properties of gelatin films incorporated with tea polyphenol-loaded chitosan nanoparticles. Journal of The Science of Food Agriculture. 89(15):2692–2700.
Bastarrachea LJ, Wong DE, Roman MJ, Lin Z, Goddard JM. 2015. Active packaging coatings. Coatings. 5(4):771–791.
Chimtong S. 2018. Antibacterial activity of chito-oligosaccharides (COSS) from shrimp shells wastes. Advance in Plants and Agriculture Research. 8(6):392–394.
Darni Y, Utami H, Septiana R, Fitriana RA. 2017. Comparative studies of the edible film based on low pectin methoxyl with glycerol and sorbitol plasticizers. Jurnal Bahan Alam Terbarukan. 6(2):158–167.
Debeaufort F, Voilley A. 2009. Edible Films and Coatings for Food Applications.
Fang Y, Tung MA, Britt IJ, Yada S, Dalgleish DG. 2002. Tensile and barrier properties of edible films made from whey proteins. Journal of Food Science. 67(1):188–193.
Fatnasari A, Nocianitrti KA, Suparthana IP. 2018. The effect of glycerol concentration on the characteristic edible film sweet potato starch (Ipomoea batatas L.). Media Ilmiah Teknologi Pangan. 5(1):27–35.
Faustine D, Setyaningsih I, Hardiningtyas SD. 2020. Depolimerisasi kitosan menggunakan sinar ultraviolet dan katalis asam klorida. Jurnal Pengolahan Hasil Perikanan Indonesia. 23(3):412–422.
Fiamingo A, Delezuk JADM, Trombotto S, David L, Campana-Filho SP. 2016. Extensively deacetylated high molecular weight chitosan from the multistep ultrasound-assisted deacetylation of beta-chitin. Ultrasonics Sonochemistry. 32:79–85.
Goy RC, De Britto D, Assis OBG. 2009. A review of the antimicrobial activity of chitosan. Polimeros. 19(3):241–247.
Guan G, Abul Kalam Azad M, Lin Y, Kim SW, Tian Y, Liu G, Wang H. 2019. Biological effects and applications of chitosan and chito-oligosaccharides. Frontier of Physiology. 10(5):1–10.
Hanif N, Tanaka J, Setiawan A, Trianto A, De Voogd NJ, Murni A, Tanaka C, Higa T. 2007. Polybrominated diphenyl ethers from the Indonesian sponge Lamellodysidea herbacea. Journal of Natural Products. 70(3):432–435.
Harish Prashanth K V., Kittur FS, Tharanathan RN. 2002. Solid state structure of chitosan prepared under different N-deacetylating conditions. Carbohydrate Polymers. 50(1):27–33.
Jacoeb AM, Nugraha R, Utari SPSD. 2014. Edible film from lindur fruit starch with addition of glycerol and carrageenan. Jurnal Pengolahan Hasil Perikanan Indonesia. 17(1):14–21.
Japanese Industrial Standard. 1975. Japanese Standards Association. 2: 1707.
Kaewprachu P, Osako K, Rawdkuen S. 2018. Effects of plasticizers on the properties of fish myofibrillar protein film. Journal of Food Science and Technology. 55(8):3046–3055.
Lagarón JM, López-Rubio A, José Fabra M. 2016. Bio-based packaging. Journal of Applied Polymer Science. 133(2):1-15.
Leerahawong A, Tanaka M, Okazaki E, Osako K. 2011. Effects of plasticizer type and concentration on the physicochemical properties of edible film from squid Todarodes pacificus mantle muscle. Fisheries Science. 77(6):1061–1068.
Liang S, Sun Y, Dai X. 2018. A review of the preparation, analysis and biological functions of chitooligosaccharide. International Journal of Molecular Science. 19(8):1-19.
Lodhi G, Kim YS, Hwang JW, Kim SK, Jeon YJ, Je JY, Ahn CB, Moon SH, Jeon BT, Park PJ. 2014. Chitooligosaccharide and its derivatives: Preparation and biological applications. Biomed Reesearch International. 2014:1-6.
Mailoa NM, Marthina Tapotubun A, Matrutty TEAA. 2017. Analysis total plate count (TPC) on fresh steak tuna applications edible coating Caulerpa sp. during stored at chilling temperature. IOP Confrence Series Earth and Environmental Science. 89(1):1-6.
Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. 2019. Chitosan as a wound dressing starting material: Antimicrobial properties and mode of action. International Journal of Molecular Sciences. 20(23):1–34.
Mourya VK, Inamdar NN, Choudhari YM. 2011. Chitooligosaccharides: Synthesis, characterization and applications. Polymer Science Series A. 53(7):583–612.
Nuriyah L, Saroja G, Ghufron M, Razanata A, Rosid NF. 2018. Karakteristik kuat tarik dan elongasi bioplastik berbahan pati ubi jalar cilembu dengan variasi jenis pemlastis. Natural B. 4(4):177–182.
Park SY, Marsh KS, Rhim JW. 2002. Characteristics of different molecular weight chitosan films affected by the type of organic solvents. Journal of Food Science. 67(1):194–197.
Priyadarshi R, Sauraj, Kumar B, Negi YS. 2018. Chitosan film incorporated with citric acid and glycerol as an active packaging material for extension of green chilli shelf life. Carbohydrate Polymers. 195:329–338.
Qiao C, Ma X, Wang X, Liu L. 2021. Structure and properties of chitosan films: Effect of the type of solvent acid. LWT-Food Science and Technology. 135(April 2020):1-6.
Ren L, Yan X, Zhou J, Tong J, Su X. 2017. Influence of chitosan concentration on mechanical and barrier properties of corn starch/chitosan films. International Journal of Biological Macromolecules. 105:1636–1643.
Ridho FA, Riyanto B, Uju. 2017. Kitoligosakarida melalui depolimerisasi kitosan dengan hidrogen peroksida untuk aplikasi biopreservatif pindang tradisional. Jurnal Pengolahan Hasil Perikanan Indoensia. 20(3):536–548.
Rivero S, Damonte L, García MA, Pinotti A. 2016. An insight into the role of glycerol in chitosan films. Food Biophysics. 11(2):117–127.
Roberts GAF. 1992. Analysis of Chitin and Chitosan. Di dalam: Chitin Chemistry. London: Macmillan Education UK. 85–115.
Rovshandeh MJ, Ekhlasi Kazaj K, Hosseini A, Pouresmaeel Selakjani P. 2014. Effect of glycerol and stearic acid as plasticizer on physical properties of benzylated wheat straw. Iranian Journal of Chemistry and Chemical Engineering. 33(4):107–116.
Rusli A, Metusalach, Salengke, Tahir MM. 2017. Karakterisasi edible film karagenan dengan. Jurnal Pengolahan Hasil Perikanan Indonesia. 20(2):219–229.
Souza VGL, Pires JRA, Rodrigues C, Rodrigues PF, Lopes A, Silva RJ, Caldeira J, Duarte MP, Fernandes FB, Coelhoso IM, et al. 2019. Physical and morphological characterization of chitosan/montmorillonite films incorporated with ginger essential oil. Coatings. 9(11):1–
Supeni G, Irawan S. 2012. Pengaruh penggunaan kitosan terhadap sifat barrier edible film tapioka termodifikasi (the effect of chitosan usage on the barrier properties of modified starch edible films). Jurnal Kimia Kemasan. 34(1):199–206.
Wardhani IK, Badres S, Prasetyaningrum A. 2013. Kinetika reaksi depolimerisasi karaginan pada suhu dan ph optimum dengan katalisator katalis sulfat. Jurnal Teknologi Kimia dan Industri. 2(4):177–183.
Wu T, Zivanovic S, Hayes DG, Weiss J. 2008. Efficient reduction of chitosan molecular weight by high-intensity ultrasound: Underlying mechanism and effect of process parameters. Journal of Agricultural and Food Chemiostry. 56(13):5112–5119.
Xia Z, Wu S, Chen J. 2013. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide. International Journal of Biological Macromolecules. 59:242–245.
Xing R, Liu S, Yu H, Guo Z, Wang P, Li C, Li Z, Li P. 2005. Salt-assisted acid hydrolysis of chitosan to oligomers under microwave irradiation. Carbohydrate Research. 340(13):2150–2153.
Yulina R, Winiati W, Kasipah C, Septiani W, Surya Mulyawan A, Wahyudi T. 2014. Pengaruh berat molekul kitosan terhadap fiksasi. Arena Tekstil. 29(2):81–90.
Zarandona I, Estupiñán M, Pérez C, Alonso-Sáez L, Guerrero P, de la Caba K. 2020. Chitosan films incorporated with exopolysaccharides from deep seawater Alteromonas sp. Marine Drugs. 18(9):1–10.
Zavareze EDR, Pinto VZ, Klein B, El Halal SLM, Elias MC, Prentice-Hernández C, Dias ARG. 2012. Development of oxidised and heat-moisture treated potato starch film. Food Chemistry. 132(1):344–350.

Authors

Muhammad Hauzan Arifin
hauzanarifin09@gmail.com (Primary Contact)
Nugraha Edhi Suyatma
Dias Indrasti
Hauzan ArifinM., SuyatmaN. E., & IndrastiD. (2022). Karakterisasi Kitooligosakarida yang Didepolimerisasi dengan Metode Berbeda dan Kajiannya sebagai Active Film: Chito-oligosaccharide Characterization Depolymerized by Different Method and Its Study as Active Film. Jurnal Pengolahan Hasil Perikanan Indonesia, 25(1), 18-33. https://doi.org/10.17844/jphpi.v25i1.39632

Article Details