Greenhouse Gases Produced During Forest Fires in the La Niña and El Niño Periods in South Sumatra Province
Abstract
South Sumatra Province has characteristics that significantly increase hotspots and produce greenhouse gas (GHG) emissions in strong El Niño phenomena. This study investigates the impact of forest fires on GHG emissions during extreme climate in the South Sumatra Province from 2010 to 2020. This research analyzes the effects of La Niña and El Niño on the region by analyzing factors such as precipitation patterns, temperature fluctuations, hotspots, and greenhouse gas emissions. This study indicates that forest fires mostly happen during the dry season (May to October). El Niño occurred for the second time in 2015-2016 and 2018-2019, which affected the highest fire (hotspots, HSs) during the strong El Niño. Meanwhile, La Niña occurred three times in 2010-2011, 2011-2012, and 2017-2018, which is related to the low HSs found and represents the highest annual rainfall in the last ten years. The highest forest fire (HSs = 17.559) occurs in the characteristics of A1-B4 (precipitation 0-100, SSTA > 0.5°C). The highest GHG emission (>400 Mton) occurred in 2015 when the strong El Niño occurred in South Sumatra Province. The strong and weak El Niño produces the highest GHG emissions of more than 30 megatons per day, while the maximum mean daily GHG emission is under 10 megatons per day. Hotspot numbers rise exponentially with increasing SSTA, showing strong statistical relationships (R² > 0.80, r > 0.79) with burned area (R² = 0.90, r = 0.92) and burned area with CO₂ emissions (R² = 0.77, r = 0.79).
Full text article
References
Aldrian, E., & Susanto, D. R. (2003). Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology, 23(12), 1435–1452. https://doi.org/10.1002/joc.950
Andela, N., & van der Werf, G. R. (2014). Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nature Climate Change, 4, 791–795. https://doi.org/10.1038/NCLIMATE2313
Anderson, W., Baethgen, W., Capitanio, F., Ciais, P., Cook, B. I., Cunha, C. G. D., Goddard, L., Schauberger, B., Sonder, K., Podestá, G., van der Velde, M., & You, L. (2023). Climate variability and simultaneous breadbasket yield shocks as observed in long-term yield records. Agricultural and Forest Meteorology, 331, Article 109321. https://doi.org/10.1016/j.agrformet.2023.109321
Ardiansyah, M., Boer, R., & Situmorang, A. P. (2017). Typology of land and forest fire in South Sumatra, Indonesia based on Assessment of MODIS data. IOP Conference Series: Earth and Environmental Science, 54, Article 012058. https://doi.org/10.1088/1755-1315/54/1/012058
Arrizaga, R., Clarke, D., Cubillos, P. P, & Tagle, J. C. R. (2023). Wildfires and human health: Evidence from 15 wildfire seasons in Chile. https://doi.org/10.18235/0005003
Asamoah, O., Danquah, J. A., Bamwesigye, D., Verter, N., Acheampong, E., Macgregor, C. J., Boateng, C. M., Kuittinen, S., Appiah, M., & Pappinen, A. (2023). The perception of the locals on the impact of climate variability on non-timber forest products in Ghana. Acta Ecologica Sinica, 44(3), 489–499. https://doi.org/10.1016/j.chnaes.2023.07.004
Báez, J. C., Pennino, M. G., Czerwinski, I. A., Coll, M., Bellido, J. M., Sánchez-Laulhé, J. M., García, A., Giráldez, A., & García-Soto, C. (2022). Long term oscillations of Mediterranean sardine and anchovy explained by the combined effect of multiple regional and global climatic indices. Regional Studies in Marine Science, 56, Article 102709. https://doi.org/10.1016/j.rsma.2022.102709
Basyuni, M., Putri, L. A. P., Murni, M. B. (2015). Implication of land-use and land-cover change into carbon dioxide emissions in Karang Gading and Langkat Timur Wildlife Reserve, North Sumatra, Indonesia. Jurnal Manajemen Hutan Tropika, 21(1), 25–35. https://doi.org/10.7226/jtfm.21.1.25
Badan Nasional Penanggulangan Bencana. (2024). National disaster data. Retrieved from http://dibi.bnpb.go.id/
Bozzola, M., Lamonaca, E., & Santeramo, F. G. (2023). Impacts of climate change on global agri-food trade. Ecological Indicators, 154, Article 110680. https://doi.org/10.1016/j.ecolind.2023.110680
Burton, C., Betts, R. A., Jones, C. D., Feldpausch, T. R., Cardoso, M., Anderson, L. O. (2020). El Niño driven changes in global fire 2015/16. Frontiers in Earth Science, 8, Article 199, https://doi.org/10.3389/feart.2020.00199
de Oliveira, E, Lobo-do-Vale, R, & Colaço, M. C. (2023). Incident analysis of traditional burns in Portugal. International Journal of Disaster Risk Reduction, 95, Article 103852. https://doi.org/10.1016/j.ijdrr.2023.103852
Guo, D., Saft, M., Hou, X., Webb, J. A., Hairsine, P. B., & Western, A. W. (2023). How does wildfire and climate variability affect streamflow in forested catchments? A regional study in eastern Australia. Journal of Hydrology, 625, Article 129979. https://doi.org/10.1016/j.jhydrol.2023.129979
Hayasaka, H. (2023). Peatland fire weather conditions in Sumatra, Indonesia. Climate, 11(5), Article 92. https://doi.org/10.3390/cli11050092
Hadiwijoyo, E. (2016). Analisis perubahan tutupan lahan akibat penyiapan lahan dengan pembakaran di Kalimantan Tengah [thesis]. Bogor: IPB University.
Hashemi, M. (2021). Forecasting El Niño and La Niña using spatially and temporally structured predictors and a convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3438–3446. https://doi.org/10.1109/JSTARS.2021.3065585
Iskandar, I., Lestari, D. O., Utari, P. A., Sari, Q. W., Setiabudidaya, D., Mardiansyah, W., Supardi, Rozirwan. (2018). How strong was the 2015/2016 El Niño event? Journal of Physics: Conference Series, 1011, Article 012030. https://doi.org/10.1088/1742-6596/1011/1/012030
Jessup, T. C., Vayda, A. P., Cochrane, M. A., Applegate, G. B., Ryan, K. C., Saharjo, B. H. (2021). Why estimates of the peat burned in fires in Sumatra and Kalimantan are unreliable and why it matters. Singapore Journal of Tropical Geography, 43(2), 1–25. https://doi.org/10.1111/sjtg.12406
Li, S., Sun, Q., & Guo, W. (2023). Variability of DMS in the East China Sea and its response to different ENSO categories. Ecological Indicators, 147, Article 109963. https://doi.org/10.1016/j.ecolind.2023.109963
Liu, Y., & Shi Y. (2023). Estimates of global forest fire carbon emissions using FY-3 active fires product. Atmosphere, 14(10), Article 1575. https://doi.org/10.3390/atmos14101575.
Masri, S., Jin, Y., & Wu, J. (2022). Compound risk of air pollution and heat days and the influence of wildfire by SES across California, 2018–2020: Implications for environmental justice in the context of climate change. Climate, 10(10), Article 145. https://doi.org/10.3390/cli10100145
Muslikah, S., & Yuliani, Y. (2023). Potential analysis of peatland fire in Ogan Komering Ilir District. International Journal of Progressive Sciences and Technologies, 41(1), 417–424. https://doi.org/10.52155/ijpsat.v41.1.5691
NOAA Climate Prediction Center. (2023). ENSO: Recent evolution, current status and prediction. U.S. Department of Commerce.
Nurdiati, S., Sopaheluwakan, A., Septiawan, P. (2021). Spatial and temporal analysis of El Niño impact on land and forest fire in Kalimantan and Sumatra. Agromet, 35(1), 1–10. https://doi.org/10.29244/j.agromet.35.1.1-10
Parks, S. A., & Abatzoglou, J. T. (2020). Warmer and drier fire seasons contribute to increases in area burned at high severity in Western US forests from 1985 to 2017. Geophysical Research Letters, 47(22), Article e2020GL089858. https://doi.org/10.1029/2020GL089858
Patel, S., Mall, R., Chaturvedi, A., Singh, R., & Chand, R. (2023). Passive adaptation to climate change among Indian farmers. Ecological Indicators, 154, Article 110637. https://doi.org/10.1016/j.ecolind.2023.110637
Philander, S. G. H. (1985). El Niño and La Niña. Journal of the Atmospheric Sciences, 42(23), 2642–2662. https://doi.org/10.1175/1520-0469(1985)042<2652:ENALN>2.0.CO;2
Planas, E., Paugam, R., Àgueda, A., Vacca, P., & Pastor, E. (2023). Fires at the wildland-industrial interface. Is there an emerging problem? Fire Safety Journal, 141, Article 103906. https://doi.org/10.1016/j.firesaf.2023.103906
Putra, R., Sutriyono, E., Kadir, S., Iskandar, I., & Lestari, D. O. (2019). Dynamical link of peat fires in South Sumatra and the climate modes in the Indo-Pacific region. The Indonesian Journal of Geography, 51(1), 18–22. https://doi.org/10.22146/ijg.35667
Ramdzan, K. N. M., Moss, P. T., Jacobsen, G., Gallego-Sala, A., Charman, D., Harrison, M. E., Page, S., Mishra, S., Wardle, D. A., Jaya, A., Aswandi, Nasir, D., & Yulianti, N. (2023). Insights for restoration: Reconstructing the drivers of long-term local fire events and vegetation turnover of a tropical peatland in Central Kalimantan. Palaeogeography, Palaeoclimatology, Palaeoecology, 628, Article 111772. https://doi.org/10.1016/j.palaeo.2023.111772
Ravindiran, G., Hayder, G., Kanagarathinam, K., Alagumalai, A., & Sonne, C. (2023). Air quality prediction by machine learning models: A predictive study on the indian coastal city of Visakhapatnam. Chemosphere, 338, Article 139518. https://doi.org/10.1016/j.chemosphere.2023.139518
Ribeiro, T. F, Silva, F, Moreira, J, & Costa, R. L. D. C. (2023). Burned area semantic segmentation: A novel dataset and evaluation using convolutional networks. ISPRS Journal of Photogrammetry and Remote Sensing, 202, 565–580. https://doi.org/10.1016/j.isprsjprs.2023.07.002
Saharjo, B. H. (2022). Research for fire prevention management in Indonesia (Smoke, haze, GHG emission reduction, and deforestation). Journal of Tropical Silviculture, 13(1), 1–13.
Singh, M., & Zhu, X. (2021). Analysis of how the spatial and temporal patterns of fire and their bioclimatic and anthropogenic drivers vary across the Amazon rainforest in El Niño and non-El Niño years. PeerJ, 9, Article e12029. https://doi.org/10.7717/peerj.12029
Singh, S. (2022). Forest fire emissions: A contribution to global climate change. Frontiers in Forests and Global Change, 5, Article 925480. https://doi.org/10.3389/ffgc.2022.925480
Unik, M., Rizki, Y., Sitanggang, I. S., & Syaufina, L. (2024). Knowledge management system for forest and land fire mitigation in Indonesia: A WebBased application development. Jurnal Manajemen Hutan Tropika, 30(1), 12–20. https://doi.org/10.7226/jtfm.30.1.12
Wang, B., Luo, X., Yang, Y. M., Sun, W., Cane, M. A., Cai, W., Yeh, S. W., & Liu, J. (2019). Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences, 116(45), 22512–22517. https://doi.org/10.1073/pnas.1911130116
Yates, C., Evans, J., Vernooij, R., Eames, T., Muir, E., Holmes, J., Edwards, A., & Russell-Smith, J. (2023). Incentivizing sustainable fire management in Australia’s northern arid spinifex grasslands. Journal of Environmental Management, 344, Article 118384. https://doi.org/10.1016/j.jenvman.2023.118384
Yin, S. (2020). Biomass burning spatiotemporal variations over South and Southeast Asia. Environment International, 145, Article 106153. https://doi.org/10.1016/j.envint.2020.106153
Yulianti, N., & Hayasaka, H. (2023). Recent active fires in Indonesia’s Southern Papua Province caused by El Niño conditions. Remote Sensing, 15, Article 2709. https://doi.org/10.3390/rs15112709
Zhong, J., Zhang, X., Guo, L., Wang, D., Miao, C., & Zhang, X. (2023). Ongoing CO2 monitoring verify CO2 emissions and sinks in China during 2018–2021. Science Bulletin, 68(20), 2467–2476. https://doi.org/10.1016/j.scib.2023.08.039
Authors
Copyright (c) 2025 Jurnal Manajemen Hutan Tropika

This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.