The Performance of Legume and Non-legume Trees under Dry Karst Areas
Abstract
Karst areas in Indonesia are arid landscapes with water-use limitations because of dissolved carbonates. Long-term water scarcity stunts plant growth and often kills them. For tropical karst forestry-greening, the three best legume and three best non-legume species from a previous trial comprising 20 species were compared. Since October 2011, seedlings of the top three non-legume, species Aleurites mollucana, Sterculia foetida, and Alstonia scholaris, and three legume species, Acacia auriculiformis, Cassea seamea, and Acacia mangium, have been grown for four months. In January 2012, field trials were established at two dry karst locations, i.e., Pracimantoro, Central Java, and Bunder, Gunung Kidul Yogyakarta. A randomized block design was used to raise 1.764 seedlings at the two sites with 7×7 plots, 3×3 spacing between trees, and three blocks. After 10 months, legumes and non-legumes differed greatly in all growth parameters. These disparities lasted up to 30 months, when trees should have adapted to their new surroundings. After seven years of planting, legume trees raised the soil's organic matter concentration from low to medium, making it more fertile, similar to soil from intensive agricultural regions. Thus, early or mixed legume plantings on tropical karst sites may aid in better re-greening than the establishment of non-legumes.
References
Allen, C. D., Alison, K., Macalady., Chenchouni, H., Bachelet, H., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., & Breshears, E. H. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001
Barbeta, A,. & Peñuelas. J. (2016). Sequence of plant responses to droughts of different timescales: Lessons from holm oak (Quercus ilex) forests. Plant Ecology and Diversity, 9(4), 321–338. https://doi.org/10.1080/17550874.2016.1212288
Baskorowati, L., Wirabuana, P. Y. A. P., Hendrati, R. L., Nurtjahjaningsih, I. L. G., Mashudi., Dedi Setiadi., Susanto, M., Pudjiono, S., Sulistiadi, H. B. S., Sumardi., & Gunawan. (2024). Early boosting of genetically improved Falcataria moluccana with mycorrhiza for better growth and disease tolerance. Forest Science and Technology, 20(2), 124–135. https://doi.org/10.1080/21580103.2024.2314709
Biswas, J. C., Ladha, J. K., Dazzo, F. B., Yanni, Y. G., & Rolfe. B. G. (2000). Rhizobial inoculation influences seedling vigor and yield of rice. Agronomy Journal, 92(5), 880–886. https://doi.org/10.2134/agronj2000.925880x
[BPT] Balai Penelitian Tanah. (2005). Petunjuk teknis analisis kimia tanah, tanaman, air dan pupuk. Bogor: Balai Penelitian Tanah Badan Penelitian dan Pengembangan Pertanian Departemen Pertanian.
Cao, M., Wu , C., Liu, J., & Jiang, Y. (2020). Increasing leaf 13c values of woody plants in response to water stress induced by tunnel excavation in a Karst Trough Valley: Implication for improving water-use efficiency. Journal of Hydrology, 586, 124895. https://doi.org/10.1016/j.jhydrol.2020.124895
Carrière., Damien, S., Nicolas, K., Martin-StPaul., Cakpo, C. B., Patris, N., Gillon, M., Chalikakis, K., Doussan, K., Olioso, A., Babic, M., Jouineau, A., Simioni, G., & Davi, G. H. (2020). The role of deep vadose zone water in tree transpiration during drought periods in karst settings – insights from isotopic tracing and leaf water potential. Science of the Total Environment, 699, 134–332. https://doi.org/10.1016/j.scitotenv.2019.134332
Chenchouni, H. (2010). Drought-induced mass mortality of atlas cedar forest (cedrusatlantica) in the international forestry review. XXIII IUFRO world congress, forest for the future: Sustaining society and the environment. The International Union of Forest Research Organizations Conference. Seoul, South Korea.
Coder, R. D. (1996). Identified benefits of community trees and forests. Retrieved from https://nfs.unl.edu/documents/communityforestry/coderbenefitsofcommtrees.pdf
Estrada, M. H., Graham, R. C., Allen, M. F., Jiménez-Osornio, J. J., & Casolco, S. R. (2013). The importance of limestone bedrock and dissolution karst features on tree root distribution in Northern Yucatán, México. Plant and Soil, 362, 37–50. https://doi.org/10.1007/s11104-012-1175-x
Fathi, A., & Barari, D. (2016). Effect of drought stress and its mechanism in plants. International Journal of Life Sciences, 10(1), 1–6. https://doi.org/10.3126/ijls.v10i1.14509
Ford, D., & Williams, P. (2007). Analysis of karst drainage systems. In D. Ford, & P. Williams (Eds.), Karst geomorphology and hydrology (pp. 145–208). John Wiley & Sons Ltd,.
Franco, A. A., & De Faria, S. M. (1997). The contribution of n2-fixing tree legumes to land reclamation and sustainability in the Tropics. Soil Biology and Biochemistry, 29(5–6), 897–903. https://doi.org/10.1016/S0038-0717(96)00229-5.
Franzel, S., Jaenicke, H., & Janssen, W. (1996). Choosing the right trees: Setting priorities for multipurpose tree improvement (ISNAR Research Report 8). International Service for National Agricultural Research. https://doi.org/10.22004/ag.econ.310718
Gei, M. G., & Powers J. S. (2013). Do legumes and non-legumes tree species affect soil properties in unmanaged forests and plantations in costa rican dry forests?. Soil Biology and Biochemistry, 57, 264–72. https://doi.org/10.1016/j.soilbio.2012.09.013
Harmoni, A. (2005). Dampak sosial ekonomi perubahan iklim. Proceeding seminar nasional PESAT 2005 (pp. E62–E68). Universitas Gunadarma.
Haryono, E., Barianto, D. H., & Cahyadi, A. (2017, September 14). Hidrogeologi kawasan karst Gunungsewu: Panduan lapangan fieldtrip PAAI 2017. https://doi.org/10.31227/osf.io/t5dgp
Hasselquist, N. J., Allen, M. F., & Santiago, L.S. (2010). Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence. Oecologia, 164(4), 881–90. https://doi.org/10.1007/s00442-010-1725-y
Heilman, J. L., McInnes, K. J., Kjelgaard, J. F., Owens, M. K., & Schwinning, S. (2009). Energy balance and water use in a Subtropical Karst Woodland on the Edwards Plateau, Texas. Journal of Hydrology, 373(3–4), 426–435. https://doi.org/10.1016/j.jhydrol.2009.05.007
Helliwell, D. R. (1986). The extent of tree roots. Arboricultural Journal, 10, 341–347. https://doi.org/10.1080/03071375.1986.9756343
Hendrati, R. L. (2015). Genetic improvement of calliandra calothyrsus for qualified wood energy. Proceeding the international conference of Indonesia forestry researchers III. Bogor.
Hendrati, R. L. (2016). Seleksi spesies adaptif untuk antisipasi perubahan iklim. Yogyakarta: Kaliwangi.
Hendrati, R. L., & Nurrohmah, S. H. (2018). Quality of genetically-improved acacia auriculiformis for renewable short-rotation wood-energy. Jurnal Manajemen Hutan Tropika, 24(3), 136–143. https://doi.org/10.7226/jtfm.24.3.136
Hendrati, R. L, Hidayati N, Hardiyanto E. B., Susanto, M., Baskorowati, L., Mashudi, & Pudjiono, S. (2022). Genetic parameters of growth and biomass in Leucaena leucocephala for wood energy. Tropical Grasslands-Forrajes Tropicales, 10(1), 15–21. https://doi.org/10.17138/tgft(10)15-21
Huong, V. D., Nambiar, S., Hai, N. X., Ha, M. N., & Dang, N. V. (2020). Sustainable management of acacia auriculiformis plantations for wood production over four successive rotations Vietnam. Forests, 11(5), 550. https://doi.org/10.3390/F11050550
Krull, E. S., Skjemstad, O. J., & Baldock, J. A. (2004). Functions of soil organic matter and the effect on soil properties (GRDC Project No CSO 00029I). The Grains Research and Development Corporation.
Larrainzar, E., Wienkoop, S., Scherling, C., Kempa S., Ladrera, S., Igor, C, A., Weckwerth, W., & González, S. M. (2009). Carbon metabolism and bacteroid functioning are involved in the regulation of nitrogen fixation in Medicago Truncatula under drought and recovery. Molecular Plant-Microbe Interactions, 22(12), 1565–1576. https://doi.org/10.1094/MPMI-22-12-1565
Larrainzar, E., Wienkoop, S., Weckwerth, W., Ladrera, R., Arrese-Igor, C., & González, S. E. (2007). Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. Plant Physiology, 144(3), 1495–1507. https://doi.org/ 10.1104/pp.107.101618
Liu, J., Shen, L., Wang, Z., Duan, X., Wu, W., Peng, X., Wu, C., & Jiang, Y. (2019). Response of plants water uptake patterns to tunnels excavation based on stable isotopes in a karst trough valley. Journal of Hydrology, 571, 485–493. https://doi.org/10.1016/j.jhydrol.2019.01.073
Liu, X., Xu, D., Hong, Z., Zhang, N., & Cui, Z. (2021). Comparative and phylogenetic analysis of the complete chloroplast genome of santalum (santalaceae). Forests, 12(10), 1303. https://doi.org/ 10.3390/f12101303
Martínez-Vilalta, J., Poyatos, R., Aguadé, D., Retana, J., & Mencuccini, M. (2014). A new look at water transport regulation in plants. New Phytologist, 204(1), 105–115. https://doi.org/10.1111/nph.12912
McCole, A., & Stern, L. A. (2007). Seasonal water use patterns of juniperus ashei on the edwards plateau, texas, based on stable isotopes in water. Journal of Hydrology, 342(3–4), 238–248. https://doi.org/10.1016/j.jhydrol.2007.05.024
Ngoran, A., Zakra, N., Ballo, K., Kouamé, C., Zapata, F., Hofman, C., & Cleemput, O. C. (2006). Litter decomposition of acacia auriculiformis cunn. ex benth. and acacia mangium willd. under coconut trees on quaternary sandy soils in Ivory Coast. Biology and Fertility of Soils, 43(1), 102–106. https://doi.org/10.1007/s00374-005-0065-2
Niu, S. L., Jiang, G. M., Li, Y. G., Gao, L. M., Liu, M. Z., Peng, Y., & Ding, L. (2003). Comparison of photosynthetic traits between two typical shrubs: Legume and non-legume in hunshandak sandland. Photosynthetica, 41(1), 111–16. https://doi.org/ 10.1023/A:1025824916389
Olano, J. M., Linares, J. C., García-Cervigón, A. I., Arzac, A., Delgado, A., & Rozas, V. (2014). Drought-induced increase in water-use efficiency reduces secondary tree growth and tracheid wall thickness in a mediterranean conifer. Oecologia, 176(1), 273–283. https://doi.org/10.1007/s00442-014-2989-4
Prakash, M., & Anandan, A. (2012). Molecular characterization, morphophysiological and biochemical evaluation of F2 and F3 generation of MAS 946-1 x ADT 43 under aerobic condition. APCBEE Procedia, 4, 22–29. https://doi.org/10.1016/j.apcbee.2012.11.005
Rafi, F. M., & Danardono. (2024). The study of soil organic carbon rate in Gunungsewu Karst Area, Pracimantoro District. IOP Conference Series: Earth and Environmental Science, 1314, 012024. https://doi.org/10.1088/1755-1315/1314/1/012024
Rose, T. J., Kearney, L. J., Erler, D. V., & Zwieten, L. (2019). Integration and potential nitrogen contributions of green manure inter-row legumes in coppiced tree cropping systems. European Journal of Agronomy, 103, 47–53. https://doi.org/10.1016/j.eja.2018.11.00
Ross, S. M. (1993). Organic matter in tropical soils: Current conditions, concerns and prospects for conservation. Progress in Physical Geography: Earth and Environment, 17(3), 265–305. https://doi.org/10.1177/030913339301700301
Setiadi, D., Susanto, M., Baskorowati, L., Mashudi., & Pudjiono, S. (2021). Genetic variation of Gmelina arborea Roxb in Trenggalek, East Java. IOP Conference Series: Earth and Environmental Science, 914(1), 012014. https://doi.org/ 10.1088/1755-1315/914/1/012014
Snider, J. L., Collins, G. D., Whitaker, J., Chapman, K. D., Horn, P., & Grey, T. L. (2014). Seed size and oil content are key determinants of seedling vigor in gossypium hirsutum. Journal of Cotton Science, 18(1), 1–9.
Sujinah, & Jamil, A. (2016). Mekanisme respon tanaman padi terhadap cekaman kekeringan dan varietas toleran. Iptek Tanaman Pangan, 11(1), 17.
Thiffault, E., Hannam, K. D., Paré, D., Titus, B. D., Hazlett, P. W., Maynard, D. G., & Brais, S. (2011). Effects of forest biomass harvesting on soil productivity in boreal and temperate forests-a review. Environmental Reviews, 19, 278–309. https://doi.org/10.1139/a11-009
Turnbull, M. (2003). Rainforst succession and nitogen nutrition in plants. South Yarra: Macmillan Publishers.
Villar-Salvador, P., Planelles, R., Oliet, J., Peñuelas-Rubira, J. L., Jacobs, D. F., & González, M. (2004). Drought tolerance and transplanting performance of holm oak (quercus ilex) seedlings after drought hardening in The Nursery. Tree Physiology, 24(10), 1147–1155. https://doi.org/10.1093/treephys/24.10.1147
Vincenzi, V., Gargini, A., & Goldscheider, N. (2009). Using tracer tests and hydrological observations to evaluate effects of tunnel drainage on groundwater and surface waters in the Northern Apennines (Italy). Hydrogeology Journal, 17(1), 135–150. https://doi.org/ 10.1007/s10040-008-0371-5
White, J. W. C., Cook, E. R., Lawrence, J. R., & Wallace, B. S. (1985). The D/H ratios of sap in trees: implications for water sources and tree ring d/h ratios. Geochimica et Cosmochimica Acta, 49(1), 237–246. https://doi.org/10.1016/0016-7037(85)90207-8
Xie, T., Shan, T., & Su, P. (2020). Drought conditions alter litter decomposition and nutrient release of litter types in an agroforestry system of China. Ecology and Evolution, 10(15), 8018–8029. https://doi.org/10.1002/ece3.6264
Xiong, Y., Xia, H., Li, Z., Cai, X., & Fu, S. (2008). Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant Soil, 304, 179–188. https://doi.org/10.1007/s11104-007-9536-6
Youkhana, A., & Idol, T. (2008). First-year biomass production and soil improvement in leucaena and robinia stands under different pollarding systems. Journal of Tropical Forest Science, 20(3), 181–187.
Villar-Salvador, P., Planelles, R., Oliet, J., Peñuelas-Rubira, J. L., Jacobs, D. F., & González, M. (2024). Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiology, 24(10), 11471155. https://doi.org/10.1093/treephys/24.10.1147
Zhao, H., Wang, X., & Wu, C. (2023). Ecosystem water use efficiency was enhanced by the implementation of forest conservation and restoration programs in China. Journal of Hydrology, 617(Part A), 128979. https://doi.org/10.1016/j.jhydrol.2022.128979
Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Manajemen Hutan Tropika is an open access journal which means that all contents is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.