The Dynamic of Functional Microbes Community Under Auri (Acacia auriculiformis Cunn. Ex Benth) Agroforestry System

Enny Widyati, Mohamad Siarudin, Yonky Indrajaya

Abstract

Microbes are important rhizosphere constituents for providing nutrients in the soil. This study analyzes the dynamic of soil functional microbes’ populations on land managed as an agroforestry (AF) system. The AF system consists of a 2-years old auri tree combined with several crops, i.e., wild grasses, peanuts (Arachis hypogaea), pigeon pea (Cajanus cajan), and maize (Zea mays). Soil samples were collected from each rhizosphere and then analyzed for their chemical properties such as N, P, K, pH, and C organic contents. The population of functional microbes was observed by isolation of the non-symbiotic N-fixer microbes (BNF), the cellulose-degrading microbes (CDM), and the phosphate solubilizing microbes (PSM) in their selective media. The total soil sugars were also tested for root exudates. The results showed that in an auri agroforestry system, the kind of crops determines the content of the soil organic material that is turned-offer into the soil. This affects the population structure and functional microbial abundance in the rhizosphere. Furthermore, microbial colonization in the rhizosphere affects plants in producing root exudates. Then, root exudates shape the structures of the microbial community, as well as an influence among inhabitants in defining mineralization of soil organic matter, nutrient availability, and trees performance.


 

References

Abebe, T., Sterck, F., Wiersum, K., & Bongers, F. (2013). Diversity, composition and density of trees and shrubs in agroforestry homegardens in Southern Ethiopia. Agroforestry Systems, 87(6), 1283–1293. https://doi.org/10.1007/s10457-013-9637-6

Araujo, A. S. F., Leite, L. F. C., de Freitas Iwata, B., de Andrade Lira, M., Xavier, G. R., & Figueiredo, M. d. V. B. (2012). Microbiological process in agroforestry systems. A review. Agronomy for Sustainable Development, 32(1), 215–226. https://doi.org/10.1007/s13593-011-0026-0

Asaah, E. K., Tchoundjeu, Z., Leakey, R. R., Takousting, B., Njong, J., & Edang, I. (2011). Trees, agroforestry and multifunctional agriculture in Cameroon. International Journal of Agricultural Sustainability, 9(1), 110–119. https://doi.org/ 10.3763/ijas.2010.0553

Ashworth, A., de Bruyn, J., Allen, F., Radosevich, M., & Owens, P. (2017). Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biology and Biochemistry, 114, 210–219. https://doi.org/10.1016/j.soilbio.2017.07.019

Atangana, A., Khasa, D., Chang, S., & Degrande, A. (2014). Definitions and classification of agroforestry systems. In Tropical agroforestry (pp. 35-47). Springer Netherlands. https://doi.org/10.1007/978-94-007-7723-1_3

Bardhan, S., Jose, S., Udawatta, R. P., & Fritschi, F. (2013). Microbial community diversity in a 21-year-old temperate alley cropping system. Agroforestry systems, 87(5), 1031–1041. https://doi.org/10.1007/s10457-013-9617-x

Beuschel, R., Piepho, H.-P., Joergensen, R. G., & Wachendorf, C. (2020). Effects of converting a temperate short-rotation coppice to a silvo-arable alley cropping agroforestry system on soil quality indicators. Agroforestry Systems, 94(2), 389–400. https://doi.org/10.1007/s10457-019-00407-2

Cai, T., Cai, W., Zhang, J., Zheng, H., Tsou, A. M., Xiao, L., ..., & Zhu, J. (2009). Host legume‐exuded antimetabolites optimize the symbiotic rhizosphere. Molecular Microbiology, 73(3), 507–517. https://doi.org/https://doi.org/10.1111/j.1365-2958.2009.06790.x

Dollinger, J., & Jose, S. (2018, 2018/04/01). Agroforestry for soil health. Agroforestry Systems, 92(2), 213–219. https://doi.org/10.1007/s10457-018-0223-9

Grayston, S. J., & Campbell, C. D. (1996). Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis). Tree Physiology, 16(11–12), 1031–1038. https://doi.org/10.1093/treephys/16.11-12.1031

Guillot, E., Bertrand, I., Rumpel, C., Gomez, C., Arnal, D., Abadie, J., & Hinsinger, P. (2021). Spatial heterogeneity of soil quality within a Mediterranean alley cropping agroforestry system: Comparison with a monocropping system. European Journal of Soil Biology, 105, 103330. https://doi.org/https://doi.org/10.1016/ j.ejsobi.2021.103330

Huang, X.-F., Chaparro, J. M., Reardon, K. F., Zhang, R., Shen, Q., & Vivanco, J. M. (2014). Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany, 92(4), 267–275. https://doi.org/10.1139/cjb-2013-0225

Islam, S. S., Islam, M. S., Hossain, M. A. T., & Alam, Z. (2013). Optimal rotation interval of akashmoni (Acacia auriculiformis) plantations in Bangladesh. Kasetsart Journal of Social Sciences, 34(1), 181–190.

Kataki, R., & Konwer, D. (2002). Fuelwood characteristics of indigenous tree species of north-east India. Biomass and Bioenergy, 22(6), 433–437. https://doi.org/10.1016/S0961-9534(02)00026-0

Lindsay, E. A., Colloff, M. J., Gibb, N. L., & Wakelin, S. A. (2010). The abundance of microbial functional genes in grassy woodlands is influenced more by soil nutrient enrichment than by recent weed invasion or livestock exclusion. Applied Environmental Microbiology, 76(16), 5547–5555. https://doi.org/10.1128/AEM.03054-09

Notaro, K. d. A., Medeiros, E. V. d., Duda, G. P., Silva, A. O., & Moura, P. M. d. (2014). Agroforestry systems, nutrients in litter and microbial activity in soils cultivated with coffee at high altitude. Scientia Agricola, 71(2), 87–95. https://doi.org/10.1590/S0103-90162014000200001

Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis. Mineralogical, organic and inorganic methods. Heidelberg: Springer. https://doi.org/10.1007/978-3-540-31211-6

Patiram, & Choudhury, B. U. (2002). Role of agroforestry in soil health management. Retrived from http://www.kiran.nic.in/pdf/publications/Role_of_Agroforestry.pdf

Pierik, R., Mommer, L., & Voesenek, L. A. (2013). Molecular mechanisms of plant competition: Neighbour detection and response strategies. Functional Ecology, 27(4), 841–853. https://doi.org/10.1111/1365-2435.12010

Pinho, R. C., Miller, R. P., & Alfaia, S. S. (2012). Agroforestry and the improvement of soil fertility: A view from Amazonia. Applied and Environmental Soil Science, 2012, 616383. https://doi.org/10.1155/2012/616383

Poeplau, C. (2021). Grassland soil organic carbon stocks along management intensity and warming gradients. Grass and Forage Science, 76(2), 186–195. https://doi.org/10.1111/gfs.12537

Puri, S., & Panwar, P. (2007). Agroforestry: Systems and practices. New Delhi: New India Publishing Agency.

Qin, X., Wei, C., Li, J., Chen, Y., Chen, H. S, Zheng, Y., ..., & Wei, J. (2017). Changes in soil microbial community structure and functional diversity in the rhizosphere surrounding tea and soybean. Journal of Agricultural Sciences, 12(1), 1–13. http://doi.org/10.4038/jas.v12i1.8201

Raj, A., Jhariya, M. K., & Pithoura, F. (2014). Need of agroforestry and impact on ecosystem. Journal of Plant Development Sciences, 6(4), 577–581.

Rivest, D., Paquette, A., Moreno, G., & Messier, C. (2013). A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agriculture, Ecosystems & Environment, 165, 74–79. https://doi.org/10.1016/j.agee.2012.12.010

Singh, K., Gautam, N. N., Singh, B., Goel, V. L., & Patra, D. (2014). Screening of environmentally less-hazardous fuelwood species. Ecological Engineering, 64, 424–429. https://doi.org/10.1016/j.ecoleng.2014.01.013

Smith, J., Pearce, B. D., & Wolfe, M. S. (2013). Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renewable Agriculture and Food Systems, 28(1), 80–92. https://doi.org/10.1017/S1742170511000585

Sobola, O., Adeyeye, S., Amadi, D., & Thlama, D. (2015). Comparative study of organic matter content of a tropical soil under three agroforestry tree species. Trends in Science and Technology Journal, 1(1), 92–95.

Suwarniati, S. (2014). Pengaruh FMA dan pupuk organik terhadap sifat kimia tanah dan pertumbuhan bunga matahari (Helianthus annuus l.) pada lahan kritis. BIOTIK: Jurnal Ilmiah Biologi Teknologi dan Kependidikan, 2(1), 58–69. https://doi.org/10.22373/biotik.v2i1.236

Szott, L. T., & Palm, C. A. (1984). Soil and vegetation dynamics in shifting cultivation fallows. Proceedings of Symposium on the Humid Tropics (pp. 360–379). EMBRAPA-CPATU. Retrieved from https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/393167/1/CPATUDoc36v1.pdf

Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39. https://doi.org/10.1177/875647939000600106

van Elsas, J. D., Trevors, J. T., Jansson, J. K., & Nannipieri, P. (2006). Modern soil microbiology. Florida: CRC Press.

Widyati, E. (2016). Microbial community behaviour in the rhizosphere of kilemo (Litsea cubeba L. Pers) after pruning. Jurnal Manajemen Hutan Tropika, 22(3), 149–157. https://doi.org/10.7226/jtfm.22.3.149

Wolna-Maruwka, A., Niewiadomska, A., & Klama, J. (2009). Biological activity of grey-brown podzolic soil organically fertilized for maize cultivation in monoculture. Polish Journal of Environmental Studies, 18(5), 931–939.

Zhang, C., Liu, G., Xue, S., & Song, Z. (2011). Rhizosphere soil microbial activity under different vegetation types on the Loess Plateau, China. Geoderma, 161(3–4), 115–125. https://doi.org/10.1016/j.geoderma.2010.12.003

Zhou, Y., Zhu, H., Fu, S., & Yao, Q. (2017). Metagenomic evidence of stronger effect of stylo (legume) than bahiagrass (grass) on taxonomic and functional profiles of the soil microbial community. Scientific Reports, 7(1), 10195. https://doi.org/10.1038/s41598-017-10613-6

Authors

Enny Widyati
Mohamad Siarudin
Yonky Indrajaya
yonky_indrajaya@yahoo.com (Primary Contact)
WidyatiE., SiarudinM., & IndrajayaY. (2022). The Dynamic of Functional Microbes Community Under Auri (Acacia auriculiformis Cunn. Ex Benth) Agroforestry System. Jurnal Manajemen Hutan Tropika, 28(2), 119. https://doi.org/10.7226/jtfm.28.2.119

Article Details