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Abstract

Mangrove forests have exceptional carbon sequestration capacity for mitigating climate change impacts. Increased 
atmospheric CO  can accelerate crop growth, improve water-use efficiency, and disrupt soil-plant balance. The 2

performance of Avicennia alba in terms of morphometrics and biomass under environmental stresses such as 
elevated CO  was poorly understood. Thus, this study aims to determine the growth response and survivability of A. 2

alba by examining height, leaf number, and growth rate under elevated CO  in the early stages of development. A 2

number of 120 seed samples of A. alba was divided into two groups; 60 germinated seeds were placed in a CO  2

incubator and 60 in a shade house as a control. The growth rate, plant height, leaf number, and mortality were 
compared between the two groups and statistical analyses were conducted. The treated seedlings exhibited 
significantly greater mean height (11.98 ± 1.09 cm), improved growth rates (1.09 ± 0.76 vs. 1.07 ± 0.46), and higher 
survivability (U = 1470, p-value < 0.05). There is a significant positive relationship between height and number of 
leaves (β = 0.298, R² = 0.535, p-value < 0.001), indicating that taller seedlings tend to produce more leaves. A 
comprehensive understanding of the balance between enhanced growth and reduced leaf production under elevated 
CO₂ levels provides valuable insights into how plants may adapt or respond to changing environmental conditions in 
future climate change scenarios.
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Introduction
Climate change, driven by the unprecedented rise in 

greenhouse gas emissions from human activities, poses a 
significant global challenge. In response, forest-based 
natural climate solutions have garnered increasing attention 
as a vital means of achieving the carbon reduction targets 
outlined in the 2015 Paris Agreement (Griscom et al., 2020; 
Andrea, 2022). Among these solutions, "blue carbon 
ecosystems"—which include mangrove forests, tidal 
marshes, and seagrass beds—are particularly important due 
to their exceptional carbon sequestration capacity per unit 
area (Lovelock & Duarte, 2019; Gu et al., 2023). Mangroves, 
known for their remarkable ability to store carbon both in 
their biomass and sediments, have been identified as a key, 
self-sustaining, forest-based strategy to mitigate the impacts 
of global climate change (Atwood et al., 2017; Gu et al., 
2023).

Mangroves are salt-tolerant species that thrive in the 
intertidal zones between terrestrial and marine environments 
along tropical and subtropical coastlines (Khairnar et al., 
2013; Pratolongo, 2022). These ecosystems support a wide 
array of marine species, contributing to rich biodiversity, and 
provide numerous benefits to human communities, including 

enhanced fisheries, ecotourism opportunities, coastal 
protection, and significant carbon storage (Worthington et 
al., 2020; Seary et al., 2021; Basyuni et al., 2022). However, 
despite their potential, efforts to restore and manage 
mangroves have often been hindered by a lack of expertise, 
particularly in the areas of species selection and site 
suitability, leading to frequent failures in rehabilitation 
initiatives (De Rezende et al., 2015; Lovelock et al., 2022).

The effects of increased atmospheric CO  on the growth 2

of mangroves have been largely explored, and existing 
evidence suggests that not all mangrove species will respond 
in the same way (Gu et al., 2023). While elevated CO  can 2

accelerate the growth of trees, pastures, and crops, it also 
enhances water-use efficiency, which could potentially 
disrupt the soil-plant water balance in areas with saline 
groundwater (Ball & Munns, 1992; Liang et al., 2022). 
However, recent studies have provided better insights into 
these dynamics. Arifanti (2020) found that certain mangrove 
species may experience enhanced productivity under higher 
atmospheric CO  levels, leading to increased biomass, larger 2

stems, and leaves with greater surface area. These effects are 
associated with higher root-to-shoot ratios, relative growth 
rates, and net assimilation rates.

https://crossmark.crossref.org/dialog/?doi=10.7226/jtfm.31.1.25&domain=pdf
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Research on mangroves in Malaysia remains scarce, with 
several key species still underexplored. This gap is evident in 
previous studies, such as Zarawie et al. (2015), which 
focused on the biomass of mangroves like Rhizophora 
apiculata, Bruguiera parviflora, B. gymnorrhiza, and 
Avicennia marina in Merbok, Malaysia, to understand their 
role in carbon storage. Among these species, A. alba stands 
out for its critical ecological functions. As a pioneer or 
colonizing species, A. alba is particularly well-suited for 
shoreline restoration, owing to its rapid growth and 
remarkable ability to establish itself in challenging coastal 
environments (Hsiung et al., 2024). Locally, mangroves 
stabilize shorelines and prevent erosion with their dense root 
systems, while globally, species like A. alba are known for 
their exceptional carbon sequestration abilities, out-
performing most terrestrial forests (Mathur et al. 2023). 
Filling these knowledge gaps is considered essential for the 
understanding of A. alba's resilience and its potential to 
mitigate climate change. Conservation strategies can be 
refined; its role as a global carbon sink can be highlighted by 
prioritizing research on A. alba. 

This study aimed to determine the growth response and 
survivability of A. alba by examining height, leaf number, 
and growth rate under conditions of elevated CO  from the 2

early stages of development. Our goal is to identify 
mangrove species with a high capacity for carbon 
sequestration, which could significantly contribute to carbon 
sink efforts and enhance mangrove forest management and 
restoration practices.

Methods
Seed sample collection and germination preparation The 
study was carried out over a 12-week period at the Biology 
Laboratory of UiTM Negeri Sembilan Branch, located at the 
Kuala Pilah Campus in Negeri Sembilan, Malaysia. Seed 
samples of A. alba, each measuring approximately 4 cm, 
were collected from the mangrove area at Morib Beach, 
Selangor (Figure 1). The length of the seeds was measured in 
centimeters (cm) using a ruler. Seed sizes were recorded, and 
images were captured using a Canon EOS 1200D DSLR 
camera.

Around 120 seed samples were prepared and divided into 
two groups; control and treatment. These seeds were initially 
placed in the prepared trays (30 cm × 25 cm) that were lined 
with cotton soaked in seawater. Once the seeds germinated, 

which took about a week, they were transferred into cups 
filled with mangrove soil. Each seed was placed at the center 
of the soil surface and gently pressed to a depth of 12.7 mm. 

Study design and growth measurement Sixty control 
samples were kept in a shade house with an ambient CO  2

concentration of 400 ppm. The remaining 60 germinated 
seeds, labelled as treated samples, were placed in a CO  2

incubator set to 1,000 ppm.  Current CO  levels are around 2

420 ppm (as of 2023). The increase in CO  levels indirectly 2

leads to rising temperatures and impacts the environment, for 
example, through phenomena such as polar ice melting. 
According to the Intergovernmental Panel on Climate 
Change, CO levels are projected to exceed 800–1,000 ppm 2 

by the end of the century under high-emission scenarios, 
either RCP8.5 or SSP5-8.5 (Intergovernmental Panel on 
Climate Change, 2014; 2023). Additionally, the 1,000 ppm 
threshold is commonly employed in experimental setups to 
investigate the impacts of elevated CO on plant growth and 2 

carbon sequestration, providing a standardized framework 
for comparative analysis across studies (Ainsworth & 
Rogers, 2007). 

The CO  was introduced from a gas tank into the 2

incubator twice daily, a process that took about 15 minutes 
each time. The samples were exposed to CO  continuously 2

for 24 hours a day. Both control and treated samples were 
monitored under controlled lighting conditions (1,000 μmol 
m⁻² s⁻¹ PAR) using two LED grow lights following Tamimia 
et al. (2019), with the temperature set to 32 °C to simulate 
daytime conditions for 12 hours.
 The seeds were watered once a day with 500 ml of 
seawater in both the CO  incubator and the laboratory room, 2

reflecting the natural habitat of mangroves, which are 
halophytic plants adapted to saline environments (Kim et al., 
2016). Then, both control and treated seed samples were 
observed twice daily. All changes observed during these 
periods were meticulously recorded. The samples were 
closely monitored until the first plumule emerged. The stem 
length (in cm), measured from the ground to the tip of the 
plant, and the number of leaves on each seedling were 
recorded. Additionally, the count of live and dead samples 
was monitored and recorded. If any seedlings became 
infected with fungus, they were cleaned, and the incubator 
was sterilized to prevent the spread of infection. The method 
was repeated weekly for a total of 12 weeks.  

 

Figure 1	 Avicennia alba (a) collection of samples from Morib Beach, (b) measurement of seed size.
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Data analysis The growth rate of the seedlings was 
calculated by subtracting the initial measurement from the 
second measurement and dividing the result by the time 
interval. The Mann-Whitney test was employed to compare 
plant height, leaf number, and growth rate between the 
control and treated groups. This test was also applied to 
evaluate differences in these parameters concerning plant 
survivability and to compare mortality between the two 
groups. To determine whether leaf number was influenced by 
plant height, a linear regression analysis was performed. All 
statistical analyses were conducted using R version 4.4.0 (R 
Development Core Team, 2024). The data are presented as 
mean ± SE.

Results and Discussion 
The growth rate, height, and number of leaves for the 

seedlings were summarized as mean ± SE for both control 
and treated groups (Table 1). The treated seedlings 
demonstrated a significantly higher mean height (11.98 ± 
1.09 cm) compared to the control group (11.43 ± 1.33 cm), 
indicating that the treatment positively influenced stem 
elongation (Mann-Whitney U = 228012, p-value < 0.05) and 
enhanced survivability (Mann-Whitney U = 263226, p-value 
< 0.05). Similarly, the growth rate was significantly greater 
in the treated group (1.09 ± 0.76) than in the control group 
(1.07 ± 0.46), suggesting improved growth under treatment 
conditions (Mann-Whitney U = 241699, p-value < 0.05) and 

 

 

 

 

 

Seedling  ID  Height  (cm)  NOL  GR (cm  week-1)  Survivability  (at week 12)  

01C 5.78  ±  1.44  2.17  ±  0.58  0.23  ±  1.27  D  
02C 9.02  ±  0.90  3.33  ±  0.38  0.88  ±  0.23  A  
03C 9.05  ±  0.84  3.33  ±  0.38  0.85  ±  0.25  A  
04C 7.18  ±  0.64  1.83  ±  0.17  0.61  ±  0.23  A  
05C 5.27  ±  0.46  1.83  ±  0.17  0.44  ±  0.15  A  
06C 5.84  ±  1.01  2.83  ±  0.52  0.20  ±  0.85  D  
07C 6.38  ±  1.10  2.67  ±  0.51  0.20  ±  0.92  D  
08C 10.65  ±  1.00  3.5  ±  0.36  0.95  ±  0.37  A  
09C 8.61  ±  0.82  3.5  ±  0.36  0.70  ±  0.25  A  
10C 11.43  ±  1.33  3.5  ±  0.36  1.07  ±  0.46  A  
11C  2.91  ±  0.69  1.17  ±  0.30  0.17  ±  0.51  D  
12C 6.86  ±  0.63  2.67  ±  0.38  0.58  ±  0.17  A  
13C 0.20  ±  0.20  0.17  ±  0.17  0.00  ±  0.31  D  
14C -  -  -  D  
15C -  -  -  D  
16C 6.79  ±  0.73  3.17  ±  0.39  0.65  ±  0.19  A  
17C 11.27  ±  1.09  3.5  ±  0.36  1.05  ±  0.37  A  
18C 9.2  ±  0.92  3.5  ±  0.36  0.85  ±  0.28  A  
19C 0.52  ±  0.37  0.17  ±  0.17  0  ±  0.46  D  
20C 7.5  ±  0.82  3  ±  0.39  0.74  ±  0.22  A  
21C 7.02  ±  0.60  3.33  ±  0.38  0.62  ±  0.23  A  
22C 5.1  ±  0.42  3.17  ±  0.39  0.42  ±  0.13  A  
23C 6.49  ±  0.48  1.83  ±  0.17  0.52  ±  0.19  A  
24C 1.24  ±  0.57  0.5  ±  0.26  0  ±  0.53  D  
25C 4.11  ±  0.86  2.67  ±  0.51  0.66  ±  0.20  A  
26C 6.79  ±  0.64  2.17  ±  0.30  0.6  ±  0.20  A  
27C

 
10.15

 
±

 
0.97

 
3.5

 
±

 
0.36

 
0.96

 
±

 
0.29

 
A

 
28C

 
6.8

 
±

 
0.68

 
3

 
±

 
0.46

 
0.67

 
±

 
0.14

 
A

 
29C

 
2.66

 
±

 
0.73

 
1.17

 
±

 
0.30

 
0

 
±

 
0.56

 
D

 
30C

 
8.74

 
±

 
0.93

 
3.33

 
±

 
0.38

 
0.89

 
±

 
0.26

 
A

 
31C

 
2.77

 
±

 
0.64

 
1.5

 
±

 
0.44

 
0.21

 
±

 
0.51

 
D

 
32C

 
-

  
-

 
-

 
D

 
33C

 
0.38

 
±

 
0.26

 
0.17

 
±

 
0.17

 
0

 
±

 
0.31

 
D

 
34C

 
0.63

 
±

 
0.35

 
0.33

 
±

 
0.22

 
0.15

 
±

 
0.33

 
D

 
35C

 
4.38

 
±

 
0.34

 
3

 
±

 
0.39

 
0.31

 
±

 
0.11

 
A

 36C
 

2.63
 
±

 
0.65

 
1.5

 
±

 
0.44

 
0.19

 
±

 
0.54

 
D

 37C
 

-
 

-
 

-
 

D
 38C

 
5.25

 
±

 
0.50

 
3.33

 
±

 
0.28

 
0.45

 
±

 
0.10

 
A

 39C
 

4.4
 
±

 
0.31

 
2.67

 
±

 
0.38

 
0.31

 
±

 
0.06

 
A

 40C
 

-
 

-
 

-
 

D
 41C 5.94 ± 0.58 3.17 ± 0.39 0.6 ± 0.10 A

           

  

Table 1 	 The survivability and the mean (± SE) height, number of leaves, and growth rate of Avicennia alba

Note: C = control; T = treatment; NOL = number of leaves; GR = growth rate; - = indicate dead sample 
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57C  2.73  ±  0.77  1.83  ±  0.58  0  ±  0.61  D  
58C  4.59  ±  0.42  2.67  ±  0.38  0.44  ±  0.05  A  
59C  0.81  ±  0.36  0.5  ±  0.26  0  ±  0.32  D  
60C  3.34  ±  0.41  1.83  ±  0.30  0.45  ±  0.14  A  
01T  6.47  ±  0.55  1.67  ±  0.22  0.49  ±  0.31  A  
02T  3.97  ±  0.47  1.5  ±  0.26  0.18  ±  0.53  D  
03T  5.42  ±  0.43  0.67  ±  0.14  0.42  ±  0.19  A  
04T  5.91  ±  0.54  0.58  ±  0.15  0.5  ±  0.25  A  
05T  7.08  ±  0.53  1.67  ±  0.22  0.52  ±  0.38  A  
06T  7.02  ±  0.55  1.67  ±  0.22  0.52  ±  0.39  A  
07T  7.97  ±  0.69  0.67  ±  0.28  0.39  ±  0.56  A  
08T  4.72  ±  0.76  0.33  ±  0.22  0.22  ±  0.70  D  
09T  4.93  ±  0.34  1.67  ±  0.22  0.35  ±  0.16  A  
10T  4.3  ±  0.77  1.17  ±  0.30  0.55  ±  0.66  A  
11T  3.04  ±  0.53  0.5  ±  0.19  0.39  ±  0.35  A  
12T

 
7.29

 
±

 
0.58

 
1.67

 
±

 
0.22

 
0.55

 
±

 
0.38

 
A

 
13T

 
11.98

 
±

 
1.09

 
2.92

 
±

 
0.45

 
1.09

 
±

 
0.76

 
A

 
14T

 
7.3

 
±

 
0.64

 
1.67

 
±

 
0.22

 
0.57

 
±

 
0.56

 
A

 
15T

 
2.41

 
±

 
0.80

 
0.42

 
±

 
0.23

 
0.2

 
±

 
0.62

 
D

 
16T

 
3.95

 
±

 
0.68

 
0.33

 
±

 
0.22

 
0.18

 
±

 
0.71

 
D

 
17T

 
3.88

 
±

 
0.42

 
1.67

 
±

 
0.22

 
0.45

 
±

 
0.23

 
A

 
18T

 
2.88

 
±

 
1.07

  
0

 
±

 
0.00

 
0

 
±

 
0.85

 
D

 
19T

 
4.5

 
±

 
0.82

 
0.83

 
±

 
0.21

 
0.62

 
±

 
0.34

 
A

 
20T

 
5.79

 
±

 
0.72

 
1.25

 
±

 
0.22

 
0.68

 
±

 
0.25

 
A

 
21T

 
8.07

 
±

 
0.63

 
1.5

 
±

 
0.26

 
0.6

 
±

 
0.33

 
A

 22T
 

4.1
 
±

 
0.48

 
1.42

 
±

 
0.32

 
0.55

 
±

 
0.20

 
A

 23T
 

3.6
 
±

 
0.63

 
1.33

 
±

 
0.28

 
0.45

 
±

 
0.35

 
A

 24T
 

3.23
 
±

 
0.33

 
0

 
±

 
0.00

 
0.36

 
±

 
0.20

 
A

 25T
 

6.13
 
±

 
0.44

 
1.67

 
±

 
0.22

 
0.46

 
±

 
0.41

 
A

 26T
 

4.28
 
±

 
0.49

 
1.33

 
±

 
0.28

 
0.59

 
±

 
0.31

 
A

 27T
 

0.49
 
±

 
0.34

 
0.33

 
±

 
0.22

 
0

 
±

 
0.40

 
D

 28T
 

5.55
 
±

 
0.56

 
1.67

 
±

 
0.22

 
0.61

 
±

 
0.14

 
A

 29T
 

3.39
 
±

 
0.32

 
0.67

 
±

 
0.22

 
0.12

 
±

 
0.45

 
A

 30T
 

4.77
 
±

 
0.40

 
1.17

 
±

 
0.46

 
0.49

 
±

 
0.21

 
A

 31T
 

5.47
 
±

 
0.51

 
0.33

 
±

 
0.22

 
0.25

 
±

 
0.54

 
A

 32T
 

3.89
 
±

 
0.57

 
0.5

 
±

 
0.23

 
0.04

 
±

 
0.46

 
A

 33T
 

2.35
 
±

 
0.42

  
0

 
±

 
0.00

 
0.32

 
±

 
0.28

 
A

 34T
 

4.47
 
±

 
0.28

 
1.67

 
±

 
0.22

 
0.25

 
±

 
0.21

 
A

 35T
 

6.47
 
±

 
0.64

 
1.67

 
±

 
0.22

 
0.56

 
±

 
0.28

 
A

 

0.156C 5.79 0.54 3.17 0.39 0.53

           
42C  5.23  ±  0.72  3  ±  0.46  0.7  ±  0.21  A  
43C  3.27  ±  0.83  2  ±  0.55  0.15  ±  0.64  D  
44C  1.79  ±  0.47  1  ±  0.30  0.18  ±  0.33  D  
45C  5.59  ±  0.57  3  ±  0.39  0.57  ±  0.06  A  
46C  1.78  ±  0.57  0.83  ±  0.30  0  ±  0.50  D  
47C  2.31  ±  0.34  1.5  ±  0.26  0.29  ±  0.14  A  
48C  1.82  ±  0.50  1  ±  0.30  0.14  ±  0.37  D  
49C  0.38  ±  0.27  0.17  ±  0.17  0  ±  0.34  D  
50C  5.07  ±  0.76  2.83  ±  0.46  0.77  ±  0.15  A  
51C  5.93  ±  0.91  3  ±  0.46  0.91  ±  0.11  A  
52C  2.08  ±  0.81  1.17  ±  0.52  0.18  ±  0.66  D  
53C  0.42  ±  0.29  0.17  ±  0.17  0  ±  0.36  D  
54C  -  -  -  D  
55C  -  -  -  D  

± ± ± 0 A

Seedling  ID Height  (cm)  NOL  GR (cm  week-1)  Survivability  (at week 12)  

Table 1 	 The survivability and the mean (± SE) height, number of leaves, and growth rate of Avicennia alba  (continued )

Note: C = control; T = treatment; NOL = number of leaves; GR = growth rate; - = indicate dead sample
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better survivability (Mann-Whitney U = 202753, p-value < 
0.05). However, the control group had a higher number of 
leaves (3.50 ± 0.36), indicating reduced leaf production 
under treatment conditions (Mann-Whitney U = 321313, p-
value < 0.05) and a potential impact on survivability (Mann-
Whitney U = 235068, p-value < 0.05). 

A linear regression analysis was conducted to examine 
the relationship between the number of leaves and the height 
of the seedlings. The model revealed a significant positive 
relationship between height and number of leaves (β = 0.298, 
SE = 0.007, t  = 40.68, p-value < 0.001). The regression (1438)

equation accounted for approximately 53.5% of the variance 
in NOL (R² = 0.535, adjusted R² = 0.5347), indicating a 
moderate to strong fit. An ANOVA test further confirmed that 
height significantly predicted number of leaves (F  = (1, 1438)

1654.6, p-value < 0.001). The residual standard error was 
1.021, suggesting that the model's predictions were 
reasonably accurate. The significant positive coefficient 
implies that as the height of the seedlings increases, the 
number of leaves also tends to increase.

The survivability of seedlings was assessed between the 
control and treated groups (Figure 2). In the control group, 32 
seedlings survived while 28 did not. In the treated group, 43 
seedlings survived while 17 did not. To determine whether 
there was a significant difference in survivability between the 
two groups, a Mann-Whitney U test was conducted. The 
results indicated that there was a statistically significant 
difference in survivability between the control and treated 
groups (Mann-Whitney U = 1470, p-value < 0.05).

The results of this study suggest that the treatment had a 
differential impact on various growth parameters of A. alba 
seedlings. Specifically, while the treatment appeared to 
enhance height and overall growth rate, it concurrently led to 
a reduction in the number of leaves. This dual effect 
highlights the complex physiological responses of A. alba to 
the treatment conditions. 

Recent years have seen a rise in greenhouse gases, 
driving global climate change. In response, the restoration 
and management of mangroves have been recognized as a 
self-sustaining, forest-based natural climate solution to 
mitigate these changes (Gu et al., 2023). Extensive research 
has been conducted on mangrove species like R. apiculata 
(Ball et al., 1997; Tamimia et al., 2019), A. germinans 
(Snedaker & Araujo, 1998; McKee & Rooth, 2008; Reef et 
al., 2015; 2016), and A. marina (Jacotot et al., 2018; Jacotot 
et al., 2019) to examine the effects of elevated CO  2

concentrations on various performance parameters, 
including growth rate (Friess et al., 2022), biomass 
estimation (Suardana et al., 2022), leaf area (Gu et al., 2023), 
salinity (Dittmann et al., 2022), temperature (Inoue et al., 
2022), and their potential for carbon sequestration (Gu et al., 
2023). The elevated CO  levels significantly increased plant 2

height, stem and shoot weight, and total biomass in fast-
growing species (Singh et al., 2019; Major & Mosseler, 
2019; Inoue et al., 2024). These findings are consistent with 
the results of this study, particularly in terms of enhanced 
height and growth rate. This is attributed to the species' 
ability to absorb carbon from the external environment and 

 
Note: C = control; T = treatment; NOL = number of leaves; GR = growth rate; indicate dead sample

  

 

Table 1 	 The survivability and the mean (± SE) height, number of leaves, and growth rate of Avicennia alba  (continued )

56T  7.25  ±  0.65  2.17  ±  0.37  0.7  ±  0.21  A  
57T  3.66  ±  0.66  1.33  ±  0.28  0.55  ±  0.34  A  
58T

 
4.82

 
±

 
0.28

 
1.67

 
±

 
0.22

 
0.25

 
±

 
0.22

 
A

 
59T

 
1.87

 
±

 
0.48

 
0.83

 
±

 
0.30

 
0

 
±

 
0.42

 
D

 60T
 

2.17
 

±
 

0.57
 
1.17

 
±

 
0.46

 
0

 
±

 
0.47

 
D

 - = 

36T 4.96 ± 0.43 1.5 ± 0.26 0.41 ± 0.18 A 
37T 1.83 ± 0.40 0 ± 0.00 0.27 ± 0.24 A 
38T   -  -   - D 
39T 7.50 ± 1.00 2.67 ± 0.51 0.22 ± 0.92 D 

40T 8.61 ± 1.12 1.42 ± 0.31 0.23 ± 1.13 D 
41T 5.98 ± 0.41 1.67 ± 0.22 0.48 ± 0.19 A 
42T 3.59 ± 0.87 0.75 ± 0.28 0.2 ± 0.54 D 
43T 9.24 ± 1.22 1.33 ± 0.28 0.22 ± 1.14 D 
44T 9.44 ± 0.74 2 ± 0.35 0.77 ± 0.58 A 
45T 3.06 ± 0.31 0.33 ± 0.22 0.32 ± 0.24 A 
46T 3.07 ± 0.33 0.5 ± 0.26 0.32 ± 0.24 A 
47T 6.46 ± 1.11 0.92 ± 0.26 0.86 ± 0.42 A 
48T - - - D 
49T 4.54 ± 0.52 1.5 ± 0.26 0.21 ± 0.58 D 
50T 5 ± 0.79 1.33 ± 0.28 0.22 ± 0.60 D 
51T 0 ± 0.00 0.17 ± 0.17 0 ± 0.00 D 
52T 4.88 ± 0.37 1.67 ± 0.22 0.35 ± 0.13 A 
53T 9.69 ± 0.81 1.67 ± 0.22 0.8 ± 0.54 A 
54T 10.93 ± 0.95 2 ± 0.30 0.95 ± 0.58 A 
55T 7.62 ± 0.63 2.5 ± 0.44 0.57 ± 0.28 A

 

Seedling ID Height (cm) NOL GR (cm week-1) Survivability (at week 12) 
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 incorporate it into various plant structures, promoting the 
expansion of shoots and roots (Wahidah et al., 2021). 
Elevated CO  enhances the plant's carbon uptake, stimulating 2

photosynthesis and typically resulting in increased growth. 
Research comparing species or cultivars with varying sink 
capacities has shown that growth rates are higher when the 
sinks are larger (Angela et al., 2016). The increase in height 
and growth rate suggests that the treatment created favorable 
conditions for vertical growth. This might be due to improved 
nutrient uptake or more efficient photosynthesis. Wahidah et 
al. (2021) mentioned that elevated CO  levels typically 2

enhance the rate of photosynthesis, which in turn boosts the 
growth rate of the plant (Wahidah et al., 2021). 

However, the accompanying reduction in leaf number 
suggests a potential trade-off, where resources were allocated 
more towards stem elongation rather than leaf production. 
This phenomenon could be a strategic adaptation to optimize 
light capture or reduce respiratory costs under the specific 
treatment conditions. High irradiance and elevated CO  2

levels enhance the rate of photosynthesis per unit of leaf mass 
(Long, 1991; Gu et al., 2023). This increase in photosynthetic 
activity leads to a surplus of fixed carbon, which is partly 
allocated towards growth and partly stored as non-structural 
carbohydrates (Körner et al., 1995; Gu et al., 2022). The 
enrichment of CO  may also elevate the plant's nutrient 2

requirements due to the accelerated growth rate (Poorter & 
Nagel, 2000; Gu et al., 2023). Interestingly, the observed 
reduction in leaf number might suggest that the seedlings 
were under some form of stress, prompting them to limit leaf 
production. In environments with limited resources, such as 
water or nutrients, plants often reduce leaf area to conserve 
water or decrease the metabolic demands of maintaining a 
larger leaf surface. In this scenario, the treatment may have 
inadvertently triggered a stress response, resulting in fewer 
leaves despite the overall increase in height. Some studies 
have shown that elevated CO  can reduce transpiration, 2

leading to a decrease in leaf mass fraction. This reduction 
occurs because the need for water uptake diminishes, 
reducing the necessity to allocate more biomass to roots 
(Morison, 1998; Poorter & Nagel, 2000; Wu et al., 2024). 
Therefore, further research on leaf number and leaf mass 

fraction is essential to fully understand the performance of 
mangrove species under elevated CO  conditions.2

The impact of elevated CO  on plant growth rates is 2

frequently influenced by the duration of exposure (Wahidah 
et al., 2021). Prolonged exposure to elevated CO  can cause 2

photosynthetic acclimation. This includes increased stomatal 
resistance, carbohydrate buildup, and reduced chlorophyll 
levels. It may also lead to feedback inhibition or physical 
damage to chloroplasts, ultimately reducing photosynthetic 
capacity (Ravi, 2019; Wang et al., 2022). This aligns with the 
observed growth pattern in A. alba, where growth was 
significantly stimulated during the first three months of 
treatment, followed by the eventual decline of 17 individuals. 
Although 43 seedlings survived until week 12 under daily 
exposure to 1,000 ppm CO , indicating A. alba's resilience to 2

elevated CO  levels, further research is needed. Long-term 2

health, reproductive success, and overall physiological 
responses should be assessed to strengthen and validate these 
preliminary findings.

The findings of this study emphasize the practical 
applications of A. alba in mangrove restoration projects, 
particularly its adaptability to diverse environmental 
conditions. The species' plasticity in growth strategy, 
including the trade-off between height and leaf number, 
highlights the importance of resource allocation and site 
preparation in optimizing growth and resilience. These traits 
can guide effective planting strategies, such as adjusting 
densities and spacing to balance carbon sequestration and 
habitat provision (Bosire et al., 2013). By supporting 
biodiversity and contributing to coastal protection and 
carbon storage, A. alba plays a pivotal role in addressing 
local and global ecological challenges. 

Conclusion  
The results of this study reveal the nuanced physiological 

responses of A. alba seedlings to elevated CO  conditions. 2

While the treatment effectively enhanced height and overall 
growth rate, it simultaneously led to a reduction in leaf 
number, suggesting a complex trade-off in resource 
allocation. This finding highlights the species' ability to 
adjust its growth strategy, possibly as an adaptation to 
optimize light capture or reduce metabolic demands under 
the given conditions. The observed responses align with 
broader research on mangrove species and underscore the 
importance of understanding the effects of elevated CO  on 2

various growth parameters. The reduction in leaf number 
may indicate a stress response or a strategic shift in biomass 
allocation, pointing to the need for further investigation. 
Specifically, future studies should focus on understanding 
how elevated CO  influences other physiological processes, 2

such as photosynthetic acclimation, nutrient uptake 
efficiency, and root development. These long-term 
experiments are essential to assess whether growth strategies 
are sustainable and how they impact reproductive success, 
which is critical for population dynamics and ecosystem 
stability. Given the critical role of mangroves in climate 
change mitigation through carbon sequestration, 
understanding the specific impacts of elevated CO  on 2

species like A. alba is essential. The study's findings 
contribute to the growing body of knowledge needed to 
optimize mangrove restoration and afforestation efforts, 
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Figure 2	 The survivability of Avicennia alba seedlings in the 
control and treated groups at week 12.
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ensuring these ecosystems continue to thrive in a changing 
climate. Future research should explore the species' carbon 
storage capacity under elevated CO  and how this varies 2

across different environmental conditions, such as salinity 
and temperature stress. Moreover, integrating genetic studies 
to identify traits associated with resilience to climate 
stressors could guide the selection of optimal genotypes for 
restoration projects. 
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