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Abstract

Peat fires substantially alter ecosystem dynamics and carbon storage, making it essential to understand how fire-
related components affect post-fire carbon stocks. This study aims to estimate the above-ground carbon stock on 
burned peatlands in Kepulauan Meranti Regency, Riau Province, and examine how fire recurrence, last fire 
occurrence, and burn severity influence the carbon stock using a modified regression model and remote sensing 
data. The normalized burn ratio index difference between post- and pre-fire was used to calculate burn severity. The 
continuous predictor variable was transformed using a natural logarithm to generate the best-fit model. The 2014 
burned peatland stored the highest carbon, whereas the 2020 burned peatland was the lowest. The 2020 fire period 
was the most severe compared to the 2014 and 2018–2019 fires, although it had a smaller burned area. This study 
highlights that fire-related components significantly affect post-fire peatland above-ground carbon stocks, 
particularly last fire occurrence and burn severity. Meanwhile, fire recurrence had the weakest impact and 
correlation with above-ground carbon stock compared to other predictors, likely due to the brief intervals between 
fire events in 2018 and 2019, which may have restricted ecosystem recovery and limited carbon storage capacity.
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Introduction
 Forest and land fires have been identified as one of the 
significant environmental alteration issues in the tropics that 
impact the global climate as they directly release greenhouse 
gas (GHG) emissions (Kukavskaya et al., 2013; Manaswini 
& Reddy, 2015; Osaki et al., 2016). Recently, there has been 
increased interest and recognition in peat globally due to the 
importance of peatlands as carbon sinks and stores 
(equivalent to about 15% of the carbon stored globally) and 
their role in global environmental change processes (Osaki et 
al., 2016; Warren et al., 2017). Unfortunately, land use 
change and management that cause damage to tropical 
peatlands have led to significant carbon releases instead of 
carbon sinks (Wit et al., 2015; Leng et al., 2019). 

Peatlands are vital components of wetland ecosystems 
because of their crucial role in the carbon cycle, significantly 
influencing global climate change (Shen et al., 2015; Guo et 
al., 2017). Studies of wetland biomass have focused mainly 
on above-ground biomass (AGB) (Wan et al., 2018). The 
estimation of AGB has become an essential way to estimate 
above-ground forest carbon stock, understand the carbon 
cycle of the ecosystem, and reflect the status of the ecosystem 
(Guo et al., 2017; Dumitraşcu et al., 2020). The AGB is often 
estimated using allometric equations that relate more easily 

measurable parameters, such as diameter-at-breast-height 
(dbh) and tree height (Wilkes et al., 2018). More than 80% of 
the carbon in peat forests stored in vegetation is found in 
standing trees (Hergoualc'h et al., 2018). Therefore, the 
calculation of this pool is essential to consider.

Peatlands in Indonesia are widely distributed along the 
coastal areas of Kalimantan, Sumatra, and West Papua. 
Sumatra has the largest peatland area in Indonesia, and the 
largest in Sumatra exists in Riau (Osaki et al., 2016). 
However, Riau is among Indonesia's most prone to forest and 
land fires (Darmawan et al. 2016). The area of land and forest 
fires in the Kepulauan Meranti is among the highest in Riau  
in recent years (Astika et al., 2022). Peat fires were the most 
significant contributors to national GHG emissions in 2015, 
accounting for approximately 33.8% of total emissions 
(MoEF, 2019). At least 70.5% of all fires from 2001–2018 
occurred in Sumatra's peat swamp forests (Vetrita & 
Cochrane, 2020).

Fire regime, including fire frequency, is critical for 
identifying changes in ecosystem fire patterns (Vetrita & 
Cochrane, 2020). Second fires are more likely to occur 
because of above-ground fuel loads, such as tree trunks that 
remain unburned from the first fire (Hoscilo et al., 2011; 
Page & Hooijer, 2016). Therefore, it is essential to 



Scientific Article

ISSN: 2087-0469

understand peatland fire information, such as location, 
burned area, and last occurrence, to protect the surrounding 
environment (Guo et al., 2017). Other vital components 
include burn severity, one of the indicators used to assess fire 
effects within burned areas (Roy et al., 2006). 

Tropical peatland fires with vegetation changes have a 
meaningful impact on the carbon cycle, affecting both 
ecosystem functionality and climate change (Shen et al., 
2015; Harenda et al., 2017). When peatlands burn, 
vegetation loss disrupts their role as carbon sinks and 
balancers, leading to significant carbon release (Guo et al., 
2017). Previously, Numata et al. (2011) focused on 
reconstructing fire history by examining fire frequency, 
severity, and time since the last fire in a forested landscape. 
Still, Numata et al. (2011) did not fully explore the effects of 
these factors on carbon stock. By addressing this gap, this 
study aims to estimate above-ground carbon stock on burned 
peatlands in Kepulauan Meranti Regency, Riau Province, 
using the allometric model. Additionally, it investigates how 
fire-related components, such as fire recurrence, last fire 
occurrence, and burn severity, affect above-ground carbon 
stock using a modified linear regression model, leveraging 
remote sensing data. For the record, this study will use the 
term “burn severity” instead of “fire severity” (Keeley, 
2009).

Methods 
Study area Kepulauan Meranti Regency in Riau Province is 
unique because almost the entire land is peatland. Sampling 
for this study was carried out in three villages with varying 
fire occurrences: Tenan (2014), Lukun (2018–2019), and 
Bungur (2020) (Figure 1). Lukun Village represents an area 
with recurrent fires, while Tenan and Bungur experienced 
single fire events. In this study, fire recurrence is defined as 

the number of times fire has affected specific areas within the 
2014–2021 period. This approach aligns with Vetrita and 
Cochrane (2020), who suggest quantifying fire events over a 
given area in a defined period. Here, it is adapted to measure 
fire recurrence. Konecny et al. (2016) determined the 
recurrent fires by overlaying each burned area for each year 
of fire occurrence.

Data collection Data collected included satellite imagery to 
identify burned peatland areas and estimate fire severity and 
dbh measurements for carbon stock estimation.

Satellite data Peatland fire detection was conducted using 
Moderate Resolution Imaging Spectroradiometer (MODIS) 
C61 Terra/Aqua satellite data for hotspots (https://firms. 
modaps.eosdis.nasa.gov) with a confidence level of >80%, 
covering historical hotspots for 2014, 2018, 2019, and 2020. 
The hotspot pattern informed pre-fire, peak, and post-fire 
periods. Burn severity was assessed using Landsat 8 C2 
L1TP satellite images (30 m resolution) from the US 
Geological Survey (USGS) (https://earthexplorer.usgs.gov), 
which were processed with radiometric correction to convert 
digital numbers (DN) to op of tmosphere (ToA) t a
reflectance. Two images were used per fire event: one before 
and one after peak fire.

Field data Traditionally, methods of vegetation biomass 
assessment are based on field surveying, which is very 
accurate (Li et al., 2021). The study sites–Tenan Village 
(2014), Lukun Village (2018–2019), and Bungur Village 
(2020)–were determined based on the last fire occurrences to 
examine the temporal effects on carbon stock. Twenty-four 
sample plots, accessible and representative of burn 
conditions, were surveyed in September 2021. The number 
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Figure 1 	Study area in Kepulauan Meranti Regency, Riau Province.
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of plots in Tenan Village was the lowest, as the last fire 
occurred in 2014, resulting in denser vegetation, making it 
more challenging and time-consuming to establish plots. 
Once sites were selected, the first plot was randomly chosen. 
Subsequent plots were established along a continuous 
transect in the same direction as the first plot. This method 
was adapted from Volkova et al. (2020), who used a grid 
layout with set spacing; however, a continuous transect 
approach was used here, without a fixed distance between 
plots, to accommodate site-specific conditions.

Square plots of 20 m × 20 m for trees, 10 m ×10 m for 
poles, and 5 m × 5 m for saplings were utilized to measure dbh 
(Figure 2) (Irawan & Purwanto, 2020). Although the 
destructive method accurately determines the biomass, it is 
time- and resource-consuming, strenuous, destructive, and 
expensive (Vashum & Jayakumar, 2012). Hence, samples in 
this study were taken non-destructively with dbh 
measurements. However, there is an ambiguity in choosing a 
particular allometric model type for predicting biomass 
(Pandey et al., 2022), as the accuracy of biomass estimation 
using dbh measurements can vary  This study categorized . 
vegetation based on dbh, with trees (≥20 cm), poles (10–20 
cm), and saplings (2.5–10 cm).

To ensure biomass estimation accuracy, the measured  dbh
from each tree was input into the allometric model for mixed 
species in tropical peat swamp forest ecosystems developed 
by Manuri et al. (2014). This model, validated using 
destructive sampling of 148 trees from Sumatran and 
Kalimantan peatlands, has an value of 96.9%, indicating a 2R   
high level of accuracy in biomass estimation. Pandey et al. 
(2022) suggest that allometric models for biomass prediction 
based on specific ecological regions could increase the 
model's accuracy.

Identification of burned areas False-color composite 
images using short-wave infrared 1 (SWIR 1), near-infrared  
(NIR), and red bands were created to distinguish between 
burned and unburned areas. A band combination is applied to 
pre- and post-fire images to determine the location of the 
training samples. Pre-fire images were captured in January 
2014, February 2018, February 2019, and January 2020, 
while post-fire images were taken in April 2014, March 2018, 

May 2019, and March 2020. Composites of bands 1–7 of  
Landsat 8 OLI provide optimization in producing high-
quality training samples that have implications for 
classification results (Jiang et al., 2018). Sample points were  
placed by examining color changes between pre- and post-
fire images, with hotspot data overlaid to indicate areas 
experiencing color changes.

Calculation of burn severity The burned area can be 
estimated using the normalized burn ratio (NBR) index 
(Verma ., 2015), which is effective for detecting burned et al
vegetation areas (Harris et al., 2011; Indratmoko & 
Rizqihandari, 2017). NBR was calculated from Landsat 8's 
NIR and SWIR 2 bands for each pre- and post-fire image, as 
shown in Equation .[1]  

[1]

Burn severity was then estimated using the difference 
normalized burn ratio (dNBR), calculated as shown in 
Equation . [2]

  dNBR = NBR pre – NBR post              [2]

A high dNBR indicates severe damage, while a low 
dNBR implies a high vegetation growth.

Classification of burn severity level  Burn severity was 
classified using thresholds based on the mean ( ) and μ
standard deviation ( ) values of dNBR data, following the σ
NASI's (2015) method. Severity levels were defined as 
follows: low ( 2  ≤ dNBR < μ σ μσ), moderate (μσ ≤ dNBR < μ), 
and high (dNBR ≥ μ). Unclassified cells were labeled as 
unburned, using ArcMap's “Con” function to apply these 
classifications across the dNBR raster.

Biomass and carbon stock estimation The biomass was 
estimated using the allometric models for mixed species in 
tropical peat swamp forest ecosystems (Manuri et al., 2014; 
Equation ), which are reliable and non-destructive in [3]
estimating above-ground carbon stocks (Nyamugama & 
Kakembo, 2015). The AGB was converted into carbon 
fractions using the IPCC's global factor of 0.47 (IPCC, 2006; 
Equation ). [4]

2.513         AGB = 0.136dbh [3]

C= 0.47AGB         [4]

note: AGB is the estimated biomass from vegetation (kg), 
dbh is the diameter measured in the field (cm), and  is the C
estimated carbon stock from vegetation. All measured 
carbon sources were totaled per sub-plot and extrapolated 
based on the sub-plot area (Manuri et al., 2011; Equation 
[5]). 

         

        [5]

note: is the total carbon stock in each plot (Mg , -1ΣC ha )n 
 ΣC  sub-plot a is the total carbon stocks in sub-plot 20 m × 20 m

(kg), is the total carbon stocks in sub-plot 10 m ×10 ΣC  sub-plot b

m (kg), is the total carbon stocks in sub-plot 5 m × 5 ΣC  sub-plot c
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Figure 2 	Sample plot design for above-ground carbon stock 
assessment of burned peatlands in Kepulauan 
Meranti Regency.
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Table 6	 Tukey honestly significant difference test on determining significant difference on the nickel content among paired 

treatment means
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Figure 3 	Temporal hotspot distribution in Kepulauan Meranti Regency.
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m (kg), sub-plot is the area of 20 m × 20 m, sub-plot is A  a A  b 
the area of 10 m ×10 m, sub-plot is the area of 5 m × 5 m, A  c 
10 is the conversion factor value. After calculating the total 
carbon stocks for each plot, the mean carbon stock for all 
plots in each stratum (last fire occurrence: 2014, 2018–2019, 
and 2020) was computed (Manuri et al., 2011; Equation ).[6]

[6]

note: is the mean carbon stocks in each stratum        

(Mg ha ), is the total carbon stocks of the entire plot-1 ΣC  in a  
-1stratum n  (Mg ha ), and is the number of sample plots in the 

stratum.

Statistical analysis Pearson correlation and multiple linear 
regression were used to analyze the impact of fire-related 
components on above-ground carbon stock, computed using 
R's “stats” package. We applied a natural logarithm ( ) ln
transformation to the continuous variable, as log-linear 
regression minimizes bias in biomass estimation 
(Chidumayo, 2013). The model is shown in Equation .[7]

Y = β  + β ln(x ) + β x  + β x0 1 1 2 2 3 3       [7]

note:  is carbon stock, is the burn severity, is the fire 1 2Y x  x  
recurrence, is the last fire occurrence, β is the intercept, 3 0 x  
and β , β , β  each is the coefficient of , , . Then, classical 1 2 3 1 2 3x x x
assumption tests were performed, including linearity, 
multicollinearity, normality, and homoscedasticity. The 
model must not violate all of those classical assumptions. All 
the tests were performed with R's “performance” package. 

Results and Discussion
Temporal hotspot distribution Forest fire predictions can 
be made based on the time of hotspot occurrences (Usman et 
al., 2015). The temporal distribution of hotspots in 
Kepulauan Meranti (Figure 3) shows a consistent yearly 
pattern, with peak fire activity occurring between February 
and March, as corroborated by Yulianti et al. (2012) and 
Riyadi et al. (2022). Additionally, a second peak of fires was 
observed in 2019 around August–September. In several other 
areas, particularly southern Sumatra, hotspots often increase 
from August to October (Yulianti et al., 2012; Thoha et al., 
2014; Setyawati & Suwarsono, 2017).

The occurrence of two peak fires within a single year can 
be detected earlier by analyzing historical patterns. Thus, 
forest fire control activities, such as fire prevention through 
patrols, especially during the dry season, can be 
implemented (Budiningsih et al., 2022), because there is a 
gap between the first and second peak fires.

The 2014 period shows the highest number of hotspots, 
while the number in other periods is much lower. Riyadi et al. 
(2022) also showed that the number of hotspots in 2014 
recorded the highest for forest fires in Kepulauan Meranti 
during 2001–2021. Increased hotspots in 2014 were 
triggered by the El Niño phenomenon (Kirana et al., 2016). 

Burned area and burn severity estimation Burned areas 
differ from hotspots because burned areas are actual fires, 
while hotspots are potential fires (Suwarsono et al., 2013). 
Belenguer-Plomer et al. (2019) stated that burned areas were 
considered anomalies since fires are inconsistent spatial and 
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temporal events. Moreover, several factors affect the burned 
area mapping from remote sensing data, including the scene 
characteristics (cloud cover is one of the most relevant in this 
case). We used the NBR index to digitally detect changes  
between pre- and post-fire images in peatland  (Figure ). the s 4
Healthy vegetation has a very high reflectance in the NIR 
spectrum and low reflectance in the SWIR spectrum (Komba 
et al., 2021). Meanwhile, for the damaged or lost vegetation, 
the opposite applies. Burned areas caused a decrease in NBR 
values (de Carvalho Jr. et al., 2015).

Burn severity estimation was based on the difference 
between pre- and post-fire NBR values. The bitemporal  
index dNBR is preferred for fire severity studies because it 
describes the degree of ecosystem change and improves the 
detection of changes in vegetation cover (Fraser et al., 2017; 
Castillo et al., 2020). Sirin  Medvedeva (2022) also and
revealed that the difference in pre- and post-fire index values 
can provide better accuracy than using index values only for 
the post-fire period. Training data samples were extracted to 
obtain the mean and standard deviation from pixels of pre-
fire NBR, post-fire NBR, and dNBR (Table 1).

The post-fire NBR value decreased from the pre-fire 
NBR value, indicating the dNBR, a critical metric for 
assessing fire severity (Athanasakis et al., 2017).  higher A
dNBR value indicates a higher likelihood of a pixel being a 
burned area, while a lower dNBR value suggests it is likely 
unburned Afira & Wijayanto, 2022). As presented in  (
Table 1 d, the NBR values for 2014 and 2018–2019 were 

significantly lower than those for 2020, indicating that the 
2020 fire resulted in the most severe burning of peatland. 
Furthermore, we categorized the burn severity levels into 
low, moderate, and high ( ).Figure 5

Severe fire activity on peatlands results in the burning of 
deep peat layers and can last for several months (Flannigan et 
al., 2009). Based on Manaswini and Reddy (2015), the 
difference in severity depends on environmental factors. 
Previously, a study by Conard et al. (2002) stated that burn 
severity is potentially influenced by changing land use 
practices, fire management policies, or climate patterns. 
Therefore, it is crucial to understand peat fires to establish 
more effective control methods (Leng et al., 2019).

Carbon stock estimation Estimating the accumulated 
biomass in the forest ecosystem is essential for assessing the 
productivity of the forest (Vashum & Jayakumar, 2012), 
mainly after the fire events. The post-fire AGB representing 
this study's carbon stock showed contrasting values 
( ). The post-fire AGB values indicate a clear trend: Table 2
peatlands burned in 2014 stored 35.21 Mg C ha-1 after seven 
years, while those burned in 2018–2019 stored only 12.30 

-1Mg C ha  after two years. The peatlands burned in 2020 
-1exhibited the lowest carbon stock, with just 1.31 Mg C ha  

after one year. These findings are consistent with other 
studies, which show that carbon stocks generally increase 
with time since the last fire. For instance, Dharmawan et al. 

-1(2013) reported carbon stocks of 26.13 Mg C ha  eight years 
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Table 1 	 Statistical summary of NBR indices used for burn severity estimation in Kepulauan Meranti Regency

Fire period
 NBR pre

 
NBR post

 
dNBR

 

Mean
 

SD
 

Mean
 

SD
 
Mean

 
SD

 

2014  0.76  0.02  0.39  0.04  0.38  0.04  

2018–2019  0.57  0.12  0.25  0.11  0.32  0.16  

2020  0.70  0.02  0.01  0.09  0.69  0.09  

Figure 4 	Changes between pre-fire (top) and post-fire (bottom) using the NBR index for (a) 2014, (b) 2018–2019, and (c) 2020 in 
Kepulauan Meranti Regency.

(a) (b)

(a)

(c)

(b) (c)
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post-burning, while Krisnawati et al. (2021) found 12.70 Mg 
-1 -1C ha  four years after burning and 103.40 Mg C ha  after 16 

years without fire.
In this study, peatlands burned seven and two years prior 

had comparable above-ground carbon stocks, indicating 
stability over time. In contrast, the carbon stock in peatlands 
burned just one year prior was significantly lower, 
highlighting a stark difference. This finding suggests that 
even a short time difference can significantly affect carbon 
storage, with the one-year post-fire carbon stock being 
notably reduced compared to the two-year post-fire 
peatlands. The low carbon stock observed one year post-fire 
underscores how fire-related components influence carbon 
dynamics. Local factors, such as species composition, 
climate, disturbance levels, and other environmental 
conditions, likely influence these variations in carbon stock. 
Our analysis specifically focused on these fire-related 
components. Overall, peatlands burned in 2014 stored nearly 

three times more above-ground carbon than those burned in 
2018–2019, while those burned in 2018–2019 stored almost 
ten times more above-ground carbon than those burned in 
2020. Previous studies support that peat forests with longer 
intervals since the last fire store significantly more carbon. A 
study by Toriyama et al. (2014) revealed that the AGB of 
undisturbed peat swamp forests was around forty times 
greater than . Krisnawati et that of recently burned peatlands
al. (2021)  also found that primary peat forests could store up 
to 115.60 Mg C ha , far exceeding the carbon stocks -1

observed in this study (Table 2). 
Moreover, non-woody vegetation dominates in the early 

stages of forest regeneration after three years without 
burning, as shown by Hoscilo et al. (2011). According to Sato 
et al. (2016), forest biomass has not fully recovered after 
eight to ten years of fire. It indicates the slow recovery of 
forest biomass, which explains why carbon stocks in recently 
burned peatlands remain low. The significant carbon loss 
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Figure 5 Burn severity levels for each fire event period in Kepulauan Meranti Regency.

Table 2	 The value of above-ground biomass (AGB) and carbon stock after the fire in Kepulauan Meranti Regency

Fire period  Treatment  AGB (Mg ha-1)  Carbon stock (Mg ha-1)  
2014  1 fire; 7 years after the last fire  74.917  35.211  
2018–2019

 
2 fires; 2 years after the last fire

 
26.165

 
12.298

 2020
 

1 fire; 1 year after the last fire
 

2.787
 

1.310
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from burned peatlands in 2020 (one year post-fire) highlights 
slow biomass recovery, resulting in much lower carbon stock 
than in other areas.

Effect of fires on above-ground carbon stock Initially, we 
transformed the response variable (carbon stock) using a 
natural logarithm ). However, the model violates the (ln
assumption of homoscedasticity. Hence, we back-
transformed the response variable. We use variance increase 
factors (VIFs) to check the collinearity between variables. If 
the VIF ≥10, there are multiple relationships between 
variables (Uyanik & Guler, 2013), which can weaken the 
model (Nimon & Oswald, 2013). Our model shows the low 
VIF value for each variable, i.e., burn severity (1.48), fire 

recurrence (1.37), and last fire occurrence (1.26). The 
residuals appear normally distributed ( -value > 0.05), and p
the error variance appears homoscedastic ( -value > 0.05). p  
Statistically, the model met all the requirements of classical 
assumptions ( .Figure 6)

A multiple regression analysis was  to  performed examine
whether the predictor variables statistically affect the 
response variable (Table 3). The coefficient of the parameter 
indicates that carbon stock increases by 1% as the last fire 
occurrence increases by 3.48%, fire recurrence decreases by 
5.77%, and the logarithmic natural form of burn severity 
decreases by 26.38%. Our model suggests that carbon stock 
has increased by 3.48% yearly since the last fire. 
Additionally, for every unit decrease in fire recurrence, 

 
 

Table 3 	 Multiple regression of carbon stock as a response to the last fire occurrence, fire recurrence, and a natural logarithm form 
of burn severity as predictors

1 * ***Note: natural logarithm form of burn severity; significance level in the range [0.01, 0.05); significance level in the range 
[0, 0.001)

Parameter  Coefficient  Std. error  p

 
-  Β0

 
-10.0595  3.6907  0.0130*

 

Ln burn severity1

 
Β1

 
-26.3806

 
2.9808

 
2.37e-08***

 

Fire 
 

recurrence
 

Β2

 

-5.7669
 

2.5256
 

0.0335*

 

Last fire occurrence

 
Β3

 

3.4786

 
0.5701

 
5.80e-06***
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Figure 6 	Results of classical assumption tests for the carbon stock model in burned peatlands.
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carbon stock increases by 5.77%, and for every unit decrease 
in the natural logarithm of burn severity, carbon stock 
increases by a substantial 26.38%. These findings indicate 
that the time elapsed since the last fire and reductions in burn 
severity and fire recurrence have a significant positive 
impact on carbon stock ( < 0.001). This model has  2p-value  R
= 90.88% and  = 89.51%. It indicates that the 2adjusted R
predictor variable in the model can predict 90.88% of the 
variance in carbon stock. If burn severity was not 
transformed using the natural logarithm, the model has a 
lower (80.93%) and (78.06%). This study 2 2 R  adjusted R
found that simultaneously, burn severity, fire recurrence, and 
last fire occurrence significantly affect the carbon stock (p-
value < 0.001). When examined individually, each predictor 
also significantly affects carbon stock  but with varying ,
significance levels. Burn severity ( < 0.001) and last p-value 
fire occurrence ( < 0.001) are more significant p-value 
predictors than fire recurrence ( < 0.05).p-value 

Nonetheless, Lin et al. (2013) stated no practical rules for 
adjusting significance levels. The differences in carbon 
stocks across various fire periods reveal the significant 
influence of fire-related components. The last fire occurrence 
and burn severity emerged as the most critical factors 
affecting the above-ground carbon stock. Each fire period 
displayed distinct burn severity levels (Table 4), determined 
using thresholds based on the mean ( ) and standard μ
deviation ( ) of NBRpost and dNBR values. Remarkably, σ
even though the burned area in 2020 (one year post-fire) was 
smaller, the burn severity was the highest, leading to an 
almost tenfold decrease in above-ground carbon stock 
compared to the peatlands that repeatedly burned in 
2018–2019 (two years post-fire). This sharp decline shows 
that while the time since the last fire is crucial for the carbon 
stock recovery process, burn severity can drastically alter the 
recovery process, even quickly. High burn severity can slow 
down biomass recovery, resulting in significantly lower 
carbon stocks than in areas with lower burn severity.

Carbon stock reduction in a once heavily burned forest is 
close to the twice burned forest (Martins et al., 2012). These 
recurring fires may not contribute to the damage or loss of 
biomass from subsequent fires (Balch et al., 2011). There 
may be a substantial delay in the transition of standing dead 
trees to surface fuel stocks (Balch et al., 2008). Cochrane  and
Laurance (2002) mentioned that the remaining trees would 
continue to die for two or more years after the initial fire. 
Thus, subsequent fires are considered less significant than 
the initial, possibly due to the extremely short intervals 
between two recurring fires that resulted in insufficient fuel 
(biomass).

Although fire recurrence is less important in this study, 
Numata et al. (2011) found that the effects of burn severity 
become more significant in forests that have burned 
repeatedly. Martins et al. (2012) indicated that burn severity  
reduced the dynamics of biomass recovery. Moreover, 

Turetsky et al. (2015) revealed that burn severity that leads to 
deeper burning in peatlands causes carbon loss. Regarding 
the last fire occurrence, recently and repeatedly burned peat 
forest is either dominated by young vegetation regrowth or 
bare ground, with a low density of dead trees remaining from 
previous fires (Konecny et al., 2016; Siahaan et al., 2020). An 
increase in pioneer individuals and species through natural 
rejuvenation occurred two years after the fires (Agus et al., 
2019). More time is required before the vegetation can 
rebuild a sufficient amount of biomass and fuel load to 
sustain a new fire (Hoscilo et al., 2011). 

We also  a correlation analysis to  the conducted determine
relationship between each predictor variable and the  
response variable (carbon stock). The correlation coefficients 
( ) of each predictor variable for carbon stock , r  are
respectively, burn severity (  = -0.77), fire recurrence (  = r r
0.04), and last fire occurrence (  = 0.72). Dormann et al. r
(2013) mention that a correlated variable with | | >0.7 is most r
commonly applied in various fields of science and is 
considered strong. There is a correlation between forest fires 
and biomass loss, which has implications for carbon stock 
(Sannigrahi et al., 2020). 

The burn severity in this study strongly correlates with 
burned peatland above-ground carbon stock. We visualize 
the relationship between burn severity as the continuous 
predictor variable and carbon stock as the response variable 
in a graph (Figure ). It showed that the direction of the line is 7
negative, indicating that higher burn severity is associated 
with lower carbon stock and vice versa. Notably, the most 
severely burned peatlands in 2020 (one year post-fire) had an 
above-ground carbon stock nearly ten times lower than that 
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Figure 7 Relationship between burn severity and carbon 
stock in burned peatlands.
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Table 4	 Burn severity levels determined by thresholds from each fire period in Kepulauan Meranti Regency

Fire period  
Burn severity level  

Low  Moderate  High  
2014

 
0.29 ≤ dNBR < 0.33

 
0.33 ≤ dNBR < 0.38

 
dNBR ≥ 0.38

 2018–2019
 

0.01 ≤ dNBR < 0.16
 

0.16 ≤ dNBR < 0.32
 

dNBR ≥ 0.32
 2020

 
0.51 ≤ dNBR < 0.60

 
0.60 ≤ dNBR < 0.69

 
dNBR ≥ 0.69

 

 



of peatlands burned recurrently in 2018–2019 (two years 
post-fire), despite the only one-year difference between these 
fire periods. In addition, the last fire occurrence also strongly 
correlates with carbon stock, and the direction is positive. 
Peatlands that have been unburned for longer periods show a 
marked increase in carbon stock. Specifically, peatlands that 
have not burned for seven years (last burned in 2014) have 
approximately three times higher carbon stock than those that 
experienced fire only two years prior (which last burned in 
the recurrent fires of 2018–2019). It indicates a substantial 
carbon accumulation over time in areas with longer fire-free 
intervals. Meanwhile, fire recurrence in this study has a weak 
positive correlation with carbon stock (close to 0), indicating 
that it has a minimal impact on the findings of this research.

Conclusion 
The 2014 burned peatlands stored the highest carbon, 

while the burned peatlands in 2020 had the lowest carbon 
stock. This study revealed that all predictor variables (burn 
severity, fire recurrence, and last fire occurrence) 
significantly affect the carbon stock. Burn severity, in 
particular, was found to have a substantial impact, with 
higher severity leading to significantly lower carbon stocks, 
even though it has a smaller burned area. It also had the 
strongest correlation among the predictors. The last fire 
occurrence significantly affected peatland carbon stock and 
strongly correlated with carbon stock, but burn severity can 
influence the recovery process. Among other predictors, fire 
recurrence had the least significant effect and the weakest 
correlation with above-ground carbon stock. This limited 
impact may be attributed to the short intervals between the 
fire events in 2018 and 2019, which likely reduced the time 
for notable ecosystem recovery and carbon accumulation. 
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