DETERMINAN, INVERS, DAN NILAI EIGEN MATRIKS SKEW-CIRCULANT DENGAN ENTRI BARISAN GEOMETRI

  • Mirza Farhan Azhari Mahasiswa Program Studi S1 Matematika, IPB University
  • Teduh Wulandari Mas'oed IPB University
  • Sugi Guritman IPB University
  • Jaharuddin IPB University
  • Siswandi IPB University

Abstract

Matriks skew-circulant adalah matriks segi yang entri terakhir setiap baris berpindah ke posisi utama dan berganti tanda disertai pergeseran semua entri lainnya ke posisi berikutnya. Dalam artikel ini, entri dari matriks circulant berupa entri barisan bilangan geometri. Tujuannya adalah merumuskan suatu formulasi sederhana dari determinan, invers, dan nilai eigen dari suatu matriks skew circulant. Formulasi determinan ditentukan dengan menerapkan serangkaian operasi baris dasar dan kolom dasar sampai diperoleh matriks diagonal. Langkah untuk mencari invers dilakukan dengan mengadaptasi metode dalam mencari determinan dan ekuivalensi baris dan kolom pada matriks. Dalam mencari nilai eigen digunakan konsep akar kesatuan (roots of unity) dan subgrup siklik.

Downloads

Download data is not yet available.
Published
2023-12-30