MASALAH DIRICHLET UNTUK PERSAMAAN BEDA DALAM GRAF TERBOBOTI
Abstract
Permasalahan umum persamaan diferensial parsial dapat ditirukan ke dalam graf, khususnya dalam graf terhubung tak berarah. Definisikan fungsi bernilai real f x( ) untuk verteks, x, di G dan ruang Hilbert 2 L G( ) yang dibentuk oleh semua fungsi f G R : . Berdasarkan sifat seminorma pada 2 L G( ) definisikan subruang 1 H G( ) yang tersusun dari semua fungsi bernilai nol. Relasi ekuivalensi yang terdapat dalam 2 L G( ) mengakibatkan subruang 1 H G( ) dapat diidentifikasi melalui ruang kuosen 2 2 L G L G %( ) ( ) / ~ . Penyesuaian untuk fungsi dua variabel dilakukan dengan menambahkan definisi turunan berarah dalam variabel pertama. Definisi dan notasi pada graf G dapat diterapkan pada S S S dengan S adalah subgraf terimbas G yang memiliki batas S . Dalam masalah Dirichlet, pembahasan difokuskan pada graf terimbas S dari G dengan bobot ( , ) x y yang dipadankan pada setiap sisi di G. Asumsikan batas S kosong dan definisikan f S R : . Solusi dari masalah Dirichlet ekuivalen dengan solusi masalah variasional. Masalah Dirichlet non homogen dengan fungsi yang diberikan g S R : , dapat direduksi ke dalam masalah Dirichlet homogen. Solusi dari masalah ini diberikan menggunakan fungsi Green. Pendekatan ini cukup bagus bila dibandingkan dengan masalah identifikasi Berenstein dan Chunng [2].Downloads
Download data is not yet available.
Published
2010-12-01
Section
Articles