PERBANDINGAN METODE FUZZY TIME SERIES DAN HOLT DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN JUMLAH MAHASISWA BARU INSTITUT PERTANIAN BOGOR
Abstract
Peramalan merupakan kegiatan memprediksi nilai suatu variabel di masa yang akan datang. Tujuan penelitian ini adalah memprediksi jumlah mahasiswa baru Institut Pertanian Bogor dengan menggunakan metode fuzzy time series dan metode pemulusan eksponensial ganda dari Holt serta membandingkan kedua metode tersebut dengan cara melihat tingkat ketepatan peramalan Mean Absolute Percentage Error (MAPE). Metode fuzzy time series menggunakan himpunan fuzzy dalam proses peramalannya sedangkan metode pemulusan eksponensial ganda dari Holt menggunakan pemulusan nilai dari serentetan data dengan cara menguranginya secara eksponensial. Dalam meramalkan jumlah mahasiswa baru Institut Pertanian Bogor, metode fuzzy time series menghasilkan tingkat ketepatan peramalan yang lebih baik dengan nilai MAPE sebesar 6.41 % dibandingkan dengan metode pemulusan eksponensial ganda dari Holt dengan nilai MAPE sebesar 7.75 %. Setelah dilakukan studi kasus, metode pemulusan eksponensial ganda dari Holt akan lebih akurat hasil peramalannya jika data yang digunakan lebih banyak.Downloads
Download data is not yet available.
Published
2013-12-01
Section
Articles