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Abstract 

In this article, we derive simple formulations of the eigenvalues, determinants, and 

also the inverse of circulant matrices whose entries in the first row form an arithmetic 

sequence. The formulation of the determinant and inverse is based on elementary row 

and column operations transforming the matrix to an equivalent diagonal matrix so 

that the formulation is obtained easily. Meanwhile, for the eigenvalues formulation, 

we simplify the known result of formulation for the general circulant matrices by 

exploiting the properties of the cyclic group induced by the set of all roots of 𝑥𝑛 −
1 = 0  as the set of points in the unit circle in the complex plane, and also by 

considering the specific property of arithmetic sequence. Then, we construct an 

algorithm for the eigenvalues formulation. This algorithm shows a better computation 

compared to the previously known result for the general case of circulant matrices. 

 

Keywords: Circulant matrix, Arithmetic Progression, Eigenvalues, Determinant, 

Inverse, Cyclic group. 

 

 

1 Introduction 

Many applications of circulant matrices come from mathematics problems such as 

numerical analysis, linear differential equations, cryptography, operator theory, and many 

others. Therefore, these could also be associated with computer science and engineering. 

Those are because of the good structure of the circulant matrix which the computation 

methods of the eigenvalues, eigenvectors, determinants, and also the inverse can be 

formulated explicitly. 

Recently, with various specializations, the above problems have been discussed in 

many papers. Here, we refer to some papers on those. The inverse dan determinant 

formulations of circulant matrices involving a geometric sequence were studied by Bueno 

[6]. Shen et al. [20] proposed some conditions for the circulant matrix invertibility with 

an entry of the Fibonacci and Lucas sequence, the determinant and inverse formulations 

for those matrices are also derived. The generalization of those works by changing the 

matrix entry in the first row of the k-Fibonacci and k-Lucas sequence was done by Jiang 

et al. [12]. Then, Jiang and Li [11] continued the results of Jiang by changing the circulant 
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matrices to the G-circulant and the left circulant matrices. Li et al. see in [14], in the same 

year, proposed an explicit formulation of the determinants of circulant and also left 

circulant matrices with Tribonacci and generalized Lucas numbers. 

Further investigation on the explicit formulation of the determinant and inverse of 

circulant matrices continued by indroducing the entry of Tribonacci and changing the 

matrix structure to skew circulant, presented by Jiang and Hong in [9]. Next, a 

computational method by applying a symbolic algorithm to compute the determinant and 

inverse of bordered tridiagonal matrices was proposed by Jia and Li in [10]. Radicic [19] 

followed the study of k-circulant matrices with geometric sequence, while Bozkurt and 

Tam [5] were interested in r-circulant matrices associated with a number sequence. Most 

recently, similar problems can be seen in [4], [17], [3], [13], [21], and [16]. 

Now in this paper, we propose the formulations of the eigenvalues, inverse, and 

also the determinant for the circulant matrices involving the arithmetic sequence in a 

simpler way than in the formulations for the general case. The formulation method for 

determining the inverse and determinant is based on a series of elementary row and 

column operations which are directed to an equivalent diagonal matrix, and the result can 

be stated in one theorem. Meanwhile, for the eigenvalues formulation, we simplify the 

known result formulation of general circulant matrices by exploiting the properties of the 

cyclic group induced by the set of all roots of 𝑥𝑛 − 1 = 0 as the set of points in the unit 

circle in the complex plane, and also by considering the speciality of the arithmetic 

sequence These topics are specific cases of the results by Radicic [18]. Here, however, 

we have a different approach in the methods especially in the proofs, and also our results 

are more specific and easier for the computation aspect. The outline of this paper is 

presented as follows. 

We present a short review for the notion of the general circulant matrix in Section 

2, including previous results related to its determinant, inverse, and eigenvalues. At the 

end of this section, we also discuss about the notion of arithmetic sequence especially 

connected with the definition of its circulant matrix. Section 3 contains a theorem and its 

proof which describes the simple formulation for the inverse and determinant of the 

matrix defined in Section 2. The eigenvalues formulation is the main result of this paper, 

and we construct an algorithm of this formulation which shows a better computation 

compared to the previously known result of the case general, presented in Section 4 and 5. In 

Section 6, we close the paper by giving a conclusion. 

 

2 Circulant Matrices with Arithmetic Sequence 

We review the topic of general circulant matrix in the first subsection, and also 

present some known results associated with the formulation of the determinants, inverse, 

and eigenvalues. Then, we review the notion of arithmetic progression in the last 

subsection and also discuss some of its properties which are connected to the subsequent 

sections. 

2.1 Known Results for General Circulant Matrices 

For any sequence of numbers, 𝑐0, 𝑐1, ⋯ , 𝑐𝑛−2, 𝑐𝑛−1, the 𝑛 × 𝑛 circulant matrix with 

the sequence in the first row, notation Circ(𝑐0, 𝑐1,⋯ , 𝑐𝑛−2, 𝑐𝑛−1), is defined as 

 



 

 

 MILANG, Vol. 19, No. 1, pp. 69-80 71 

Circ(𝑐0, 𝑐1,⋯ , 𝑐𝑛−2, 𝑐𝑛−1) =

(

 
 

𝑐0 𝑐1 𝑐2 ⋯ 𝑐𝑛−1
𝑐𝑛−1 𝑐0 𝑐1 ⋯ 𝑐𝑛−2
𝑐𝑛−2 𝑐𝑛−1 𝑐0 ⋱ ⋮
⋮ ⋮ ⋮ ⋱ 𝑐1
𝑐1 𝑐2 ⋯ 𝑐𝑛−1 𝑐0 )

 
 
. 

 

Let C be the Circ(𝑐0, 𝑐1, ⋯ , 𝑐𝑛−2, 𝑐𝑛−1) , 𝜆𝑘  be the eigenvalues, and for 𝑘 =
 0,1,2, . . . , 𝑛 − 1 , let 𝑣𝑘  be the corresponding eigenvectors of 𝜆𝑘 . The well-known 

formulation of 𝜆𝑘 and 𝑣𝑘 (see for examples in ([7], [2], [1]) are 

 

𝜆𝑘 =∑𝑐𝑗𝜔
𝑗𝑘

𝑛−1

𝑗=0

      and       𝑣𝑘 = (1,𝜔
𝑘, 𝜔2𝑘, ⋯ , 𝜔(𝑛−2)𝑘, 𝜔(𝑛−1)𝑘) 

 

(1) 

 

where 𝜔 = 𝑒
2𝜋

𝑛 = cos (
2𝜋

𝑛
) + 𝑖 sin (

2𝜋

𝑛
)  with 𝑖 = √−1.  In this case, the set 𝑆 =

{1, 𝜔,𝜔2, ⋯ , 𝜔𝑛−1} is a subgroup of the multiplication group of complex numbers ℂ∗ =
ℂ\{0}. In fact, 𝑆 is cyclic and ω is a generator of S, and we can see that all the elements 

of S are solutions of 𝑥𝑛 − 1 = 0. For the sake of simplification, we write down Equation 

(1) as a matrix multiplication 

 

(

 
 

1 1 1 ⋯ 1
1 𝜔 𝜔2 ⋯ 𝜔𝑛−1

1 𝜔2 𝜔4 ⋯ 𝜔2(𝑛−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔𝑛−1 𝜔(𝑛−1)2 ⋯ 𝜔(𝑛−1)(𝑛−1))

 
 

(

 
 

𝑐0
𝑐1
𝑐2
⋮

𝑐𝑛−1)

 
 
=

(

 
 

𝜆0
𝜆1
𝜆2
⋮

𝜆𝑛−1)

 
 
      

 

 

(2) 

 

It is clear from Equation (1), we obtain that the determinant and inverse 

formulation of C are 

 

det(𝐶) =∏∑𝑐𝑗𝜔
𝑗𝑘

𝑛−1

𝑗=0

𝑛−1

𝑘=0

       and     𝐶−1 = Circ(𝑢0, 𝑢1, ⋯ , 𝑢𝑛−2, 𝑢𝑛−1)     
 

(3) 

 

where 𝑢𝑖 =
1

𝑛
∑ 𝜆𝑘𝜔

−𝑖𝑗𝑛−1
𝑘=0  for 𝑖 = 0,1,⋯𝑛 − 1. Increasing the value of n implies the 

computation of those formulas is not efficient to be implemented. This is because of 

applying complex number arithmetic even if the elements of the matrix are real numbers. 

But, if the formation of 𝑐0, 𝑐1, ⋯ , 𝑐𝑛−2, 𝑐𝑛−1  has a good structure, for instance, the 

sequence formulated by recurrence relation, then we have a big chance to simplify to get 

better formulations for the determinant, inverse, and eigenvalues of C. These become 

interesting research topics over the last decades which mostly focus on the determinant 

and inverse. Based on those background topic research, in this paper; we are focusing on 

observing simplification of the eigenvalues formulation of circulant matrix and we choose 

𝑐0, 𝑐1,⋯ , 𝑐𝑛−2, 𝑐𝑛−1 is arithmetic progression (sequence). 
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2.2 Arithmetic Progression 

Arithmetic progression or arithmetic sequence is a sequence of numbers so that the 

difference of the consecutive terms is constant. If the initial term of that sequence is 

denoted by 𝑢0 and d is the common difference, then we get the successive members: 

𝑢0, 𝑢0 + 𝑑, 𝑢0 + 2𝑑,⋯ , 𝑢0 + (𝑗 − 1)𝑑,⋯ which means that the n-th term is 𝑢𝑛 = 𝑢0 +
(𝑛 − 1)𝑑 for all integers 𝑛 ≥ 2. The following proposition is easy to prove, and next, it 

will be referred to in the proof of the formulation of the eigenvalues. This proposition can 

be proved by mathematical induction. 

 

Proposition 1. In the arithmetic sequence, the sum of the first n terms is formulated as  

𝑆𝑛 =
𝑛(𝑢0+𝑢𝑛−1)

2
 for any integer 𝑛 ≥ 2. Then, we have that the mean value of the series 

𝑆𝑛 can be formulated as  𝜇 =
𝑆𝑛

2
=
(𝑢0+𝑢𝑛−1)

2
.  Furthermore, for the case of n is even, we 

have 

𝑇𝑛 =∑(−1)𝑗𝑢𝑗

𝑛−𝑖

𝑗=0

=
−𝑛𝑑

2
. 

 

In the following, we define the circulant matrix with the entries in the first row 

having forming an arithmetic sequence which will become the main object of the topic in 

the subsequent discussion. 

 

Definition 1. Given constant values a and d and any integer 𝑛 ≥ 2. We define the 𝑛 × 𝑛 

circulant matrix with the entry in the first row {𝑎 + (𝑗 − 1)𝑑}𝑗=1
𝑛  is the matrix, denoted 

by 𝐴𝑎,𝑑,𝑛, as 

𝐴𝑎,𝑑,𝑛 = 𝐶𝑖𝑟𝑐(𝑎, 𝑎 + 𝑑, 𝑎 + 2𝑑, . . . , 𝑎 + (𝑛 − 2)𝑑, 𝑎 + (𝑛 − 1)𝑑). 
 

3 A Theorem for Determinant and Inverse Formulation 

For the proof of the following theorem, we refer to [15] as a basic theory. 

 

Theorem 1. Given constant values a and d and any integer 𝑛 ≥ 2. Let 𝐴 be the 

circulant matrix 𝐴𝑎,𝑑,𝑛, and let 𝜇 =
2𝑎+(𝑛−1)𝑑

2
 be the mean value as stated in Proposition 

1. If μ≠0, then 

𝑑𝑒𝑡 (𝐴) = 𝜇(−𝑎𝑑)𝑛−1   
and  

𝐴−1 =
1

𝑑𝑛2𝜇
Circ(𝑑 − 𝑛𝜇, 𝑑 + 𝑛𝜇, 𝑑,⋯ , 𝑑). 

 

Proof. The following proof is described step by step in 5 steps. Let 𝐴 = 𝐴𝑎,𝑑,𝑛 = 

(

 
 
 

𝑎 𝑎 + 𝑑 𝑎 + 2𝑑 ⋯ 𝑎 + (𝑛 − 1)𝑑
𝑎 + (𝑛 − 1)𝑑 𝑎 𝑎 + 𝑑 ⋯ 𝑎 + (𝑛 − 2)𝑑
𝑎 + (𝑛 − 2)𝑑 𝑎 + (𝑛 − 1)𝑑 𝑎 ⋱ 𝑎 + (𝑛 − 3)𝑑

⋮ ⋮ ⋮ ⋱ ⋮
𝑎 + 2𝑑 𝑎 + 3𝑑 𝑎 + 4𝑑 ⋯ 𝑎 + 𝑑
𝑎 + 𝑑 𝑎 + 2𝑑 𝑎 + 3𝑑 ⋯ 𝑎 )
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be the matrix as defined in Definition 1. 

 

1. We apply 𝐸1, a series of elementary row operations acting on 𝐴 = 𝐴𝑎,𝑑,𝑛 by 

substracting the i-th row by the first row, for 𝑖 = 2,3,⋯ , 𝑛.  The result is  

 

 𝐴 ∼ 𝐷1 =

(

 
 
 

𝑎 𝑎 + 𝑑 𝑎 + 2𝑑 ⋯ 𝑎 + (𝑛 − 2)𝑑 𝑎 + (𝑛 − 1)𝑑
(𝑛 − 1)𝑑 −𝑑 −𝑑 ⋯ −𝑑 −𝑑
(𝑛 − 2)𝑑 (𝑛 − 2)𝑑 −2𝑑 ⋯ −2𝑑 −2𝑑

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
2𝑏 2𝑏 2𝑑 ⋯ −(𝑛 − 2)𝑑 −(𝑛 − 2)𝑑

𝑑 𝑑 𝑑 ⋯ 𝑑 −(𝑛 − 1)𝑑 )

 
 
 

. 

 

In this step, there exists a unique matrix 𝐿1 = 𝐸1(𝐼𝑛) such that 𝐷1 = 𝐿1𝐴 

where 

 

𝐿1 =

(

  
 

1 0 0 ⋯ 0 0
−1 1 0 ⋯ 0 0
−1 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
−1 0 0 ⋯ 1 0
−1 0 0 ⋯ 0 1)

  
 
. 

 

2. Let 𝐾1  be a series of elementary row operations row acting on 𝐷1  by 

substracting the jth column by the first column, for 𝑗 = 2, 3,⋯ , 𝑛.  The result 

is 

 

 𝐴~𝐷1 = 𝐾1(𝐷1) =

(

 
 
 

𝑎 𝑑 2𝑑 ⋯ (𝑛 − 2)𝑑 (𝑛 − 1)𝑑
(𝑛 − 1)𝑑 −𝑛𝑑 −𝑛𝑑 ⋯ −𝑛𝑑 −𝑛𝑑
(𝑛 − 2)𝑑 0 −𝑛𝑑 ⋯ −2𝑑 −𝑛𝑑

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
2𝑑 0 0 ⋯ −𝑛𝑑 −𝑛𝑑
𝑑 0 0 ⋯ 0 −𝑛𝑑 )

 
 
 

 

 

and there exists matrix 𝑅1 = 𝐾1(𝐼𝑛) such that 𝐷2 = 𝐿1𝐴𝑅1, where 

 

𝑅1 =

(

  
 

1 −1 −1 ⋯ −1 −1
0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 0
0 0 0 ⋯ 0 1 )

  
 
. 

 

3. Apply 𝐸2, a series of elementary row operations acting on 𝐷2 by substracting 

the i-th row by the (𝑖 + 1)-th row, consecutively for 𝑖 = 2, 3,⋯ , (𝑛 − 1).  
The result is 
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 𝐴~𝐷3 = 𝐸2(𝐷2) =

(

 
 
 

𝑎 𝑑 2𝑑 ⋯ (𝑛 − 2)𝑑 (𝑛 − 1)𝑑
𝑑 −𝑛𝑑 0 ⋯ 0 0
𝑑 0 −𝑛𝑑 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝑑 0 0 ⋯ −𝑛𝑑 0
𝑑 0 0 ⋯ 0 −𝑛𝑑 )

 
 
 

 

 

and there exists matrix 𝐿2 = 𝐸2(𝐿1) such that 𝐷3 = 𝐿2𝐴𝑅1, where 

 

𝐿1 =

(

  
 

1 0 0 ⋯ 0 0
0 1 −1 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 −1
−1 0 0 ⋯ 0 1 )

  
 
. 

 

4. Let 𝐾2 be a series of elementary row operations acting on 𝐷3  by adding 
1

𝑛
 

times the j-th column to the first column, for 𝑗 = 2, 3,⋯ , 𝑛. The result is 

 

 𝐴~𝐷4 = 𝐾2(𝐷3) =

(

 
 
 

𝑇 𝑑 2𝑑 ⋯ (𝑛 − 2)𝑑 (𝑛 − 1)𝑑
0 −𝑛𝑑 0 ⋯ 0 0
0 0 −𝑛𝑑 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −𝑛𝑑 0
0 0 0 ⋯ 0 −𝑛𝑑 )

 
 
 
  

 

where 

 

𝑇 = 𝑎 +
𝑑

𝑛
+
2𝑑

𝑛
+⋯+

(𝑛 − 2)𝑑

𝑛
+
(𝑛 − 1)𝑑

𝑛
= 𝑎 +

𝑑

𝑛
∑ 𝑖

𝑛−1

𝑖=1

 = 𝑎 +
𝑑𝑛(𝑛 − 1)

2𝑛
=
𝑎 + [𝑎 + 𝑑(𝑛 − 1)]

2
=
2𝑎 + (𝑛 − 1)𝑑

2
= 𝜇.

 

 

Now, the determinant formulation is det(𝐴) = det(𝐴4) = 𝜇(−𝑛𝑑)
𝑛−1 .  

Moreover, there exists matrix 𝑅 = 𝐾2(𝑅1) such that 𝐷4 = 𝐿2𝐴𝑅 where 

 

𝑅 =

(

 
 
 
 
 
 

𝑈 −1 −1 ⋯ −1 −1
1

𝑛
1 −1 ⋯ 0 0

1

𝑛
0 1 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1

𝑛
0 0 ⋯ 1 −1

−1 0 0 ⋯ 0 1 )
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and in this case, 𝑈 = 1 − ∑ (
1

𝑛
)𝑛−1

𝑖=1 = 1 −
𝑛−1

𝑛
=
1

𝑛
. 

 

5. We apply 𝐸3, a series of elementary row operations acting on 𝐷4 by adding 
𝑖−1

𝑛
 times the i-th row to the first row, for 𝑖 = 2, 3,⋯ , 𝑛 . The result is a 

diagonal matrix 

 

 𝐴~𝐷 = 𝐸3(𝐷4) =

(

 
 
 

μ 0 0 ⋯ 0 0
0 −𝑛𝑑 0 ⋯ 0 0
0 0 −𝑛𝑑 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ −𝑛𝑑 0
0 0 0 ⋯ 0 −𝑛𝑑)

 
 
 

 

 

and there exists matrix 𝐿 = 𝐸3(𝐿2) such that 𝐷 = 𝐿𝐴𝑅 where 

 

𝐿 =

(

 
 
 
 

1

𝑛

1

𝑛

1

𝑛
⋯

1

𝑛

1

𝑛
0 1 −1 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 1 −1
−1 0 0 ⋯ 0 1 )

 
 
 
 

. 

 

Finally, we obtain the formulation for the inverse 

 

𝐴−1 = Circ (
1

𝑛2𝜇
−
1

𝑛𝑑
,
1

𝑛2𝜇
+
1

𝑛𝑑
,
1

𝑛2𝜇
,⋯ ,

1

𝑛2𝜇
)

 =
1

𝑑𝑛2𝜇
Circ(𝑑 − 𝑛𝜇, 𝑑 + 𝑛𝜇, 𝑑⋯ , 𝑑).  ∎

 

 

The following corollary shows that 𝐴𝑎,𝑑,𝑛 is invertible if only if the first term is not 

equal to the negative of the last term in the arithmetic sequence of 𝐴𝑎,𝑑,𝑛.  

 

Corollary 1. The matix 𝐴𝑎,𝑑,𝑛 is invertible if only if 𝑎 ≠
(1−𝑛)𝑑

2
. 

 

Proof. Based on the formulation of 𝐴𝑎,𝑑,𝑛
−1  in Theorem 1. 𝐴𝑎,𝑑,𝑛 is invertible if only if 

𝑑𝑛2𝜇 ≠ 0 ⇔ 𝜇 ≠ 0 ⇔ 2𝑎 + (𝑛 − 1)𝑑 ≠ 0 ⇔ 𝑎 ≠
(1−𝑛)𝑑

2
.  

 

4 A Theorem for Eigenvalues Formulation 

Recall the subgroup 𝑆 = {1, 𝜔,𝜔2, ⋯ , 𝜔𝑛−1} in Section 2 which is a cyclic group, 

Gemetrically, all n elements in S are points on the complex plane. Those points occupy 

the unit circle and divide the circle into n equals parts. Thus, for 𝑙 = 1, 2,⋯ , ⌊
𝑛

2
⌋ and 𝜃 =

2𝜋

𝑛
, we have 
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𝜔𝑙 +𝜔𝑛−𝑙 = 𝜔𝑙 + 𝜔−𝑙 = 2 cos(𝑙𝜃) and 𝜔𝑙 − 𝜔𝑛−𝑙 = 𝜔𝑙 − 𝜔−𝑙 = 2𝑖 sin(𝑙𝜃) (4) 

 

Furthermore, from the above fact, we have a lemma as follows. 

 

Lemma 2. Let 𝑚 = ⌊
𝑛−1

2
⌋, then for 𝑘 = 1, 2,⋯ ,𝑚, we have 

∑𝑐𝑜𝑠 (𝑡𝑘𝜃)

𝑚

𝑡=1

= {
−
1

2
𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑜𝑑𝑑

−1 + (−1)𝑘+1

2
𝑤ℎ𝑒𝑛 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

 

Proof. Since 𝑆 = {1, 𝜔, 𝜔2, ⋯ , 𝜔𝑛−1} is cyclic group, then for 𝑘 = 1, 2,⋯ ,𝑚, it is 

clear that T={1, 𝜔𝑘, 𝜔2𝑘, ⋯ , 𝜔(𝑛−1)𝑘} is a subgroup of S which also occupies the unit 

circle in the complex plane.  Thus, we have 

1 + 𝜔𝑘 + 𝜔2𝑘 + ⋯+ 𝜔(𝑛−1)𝑘 =
(𝜔𝑘)𝑛 − 1

𝜔𝑘 − 1
= 0 

And then using Equation 4, we obtain 

∑(𝜔𝑡𝑘 + 𝜔−𝑡𝑘)

𝑚

𝑡=1

= {
−1 when 𝑛 is odd

−1 − (𝜔
𝑛

2)
𝑘

when 𝑛 is even
 ⇔ 

2∑cos(𝑡𝑘𝜃)

𝑚

𝑡=1

= {
−1 when 𝑛 is odd

−1 + (−1)𝑘+1 when 𝑛 is even
 ⇔ 

∑cos(𝑡𝑘𝜃)

𝑚

𝑡=1

= {
−
1

2
when 𝑛 is odd

−1 + (−1)𝑘+1

2
when 𝑛 is even.  ∎

 

 

Theorem 3. Given constant values a and d and any integer 𝑛 ≥ 2. Let 𝐴 be the 

circulant matrix 𝐴 = 𝐴𝑎,𝑑,𝑛 = Circ(𝑢0, 𝑢1, ⋯ , 𝑢𝑛−1), and for 𝑗 = 0, 1, 2,⋯ , 𝑛 − 1, let 𝜆𝑗 

be the eigenvalues of A.  If 𝜃 =
2𝜋

𝑛
 and 𝑚 = ⌊

𝑛−1

2
⌋, then 𝜆0 =

𝑛(2𝑎+(𝑛−1)𝑑)

3
 and for 𝑘 =

1, 2,⋯ ,𝑚,  we obtain 

𝜆𝑘 = 𝑅 + 𝐶𝑘𝑖 𝑎𝑛𝑑 𝜆𝑛−𝑘 = 𝜆𝑘̅̅ ̅  = 𝑅 − 𝐶𝑘𝑖 
where 

𝑅 =
−𝑛𝑑

2
 𝑎𝑛𝑑 𝐶𝑘 = −𝑑∑(𝑛 − 2𝑡) sin(𝑡𝑘𝜃)

𝑚

𝑡=1

. 

We add 𝜆𝑚+1 =
−𝑛𝑑

2
 when n is even. 

 

Proof. From Equation (2), consider first that in the context of matrix 𝐴, we have 
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(

  
 

1   1 1
1  𝜔 𝜔2 
1  𝜔2 𝜔4 

⋯ 1 1
⋯ 𝜔−2 𝜔−1

⋯ 𝜔−4 𝜔−2

 
⋮ ⋮ ⋮
1 𝜔−2 𝜔−4

1 𝜔−1 𝜔−2

⋱ ⋮ ⋮
⋯ 𝜔4 𝜔2

⋯ 𝜔2 𝜔 )

  
 

(

  
 

𝑢0
𝑢1
𝑢2
⋮

𝑢𝑛−2
𝑢𝑛−1)

  
 
=

(

 
 
 

𝜆0
𝜆1
𝜆2
⋮

𝜆𝑛−2
𝜆𝑛−1)

 
 
 

 

 

and so directly from Theorem 1, it clear that 𝜆0 =
𝑛(𝑢0+𝑢𝑛−1)

2
=
𝑛(2𝑎+(𝑛−1)𝑑)

2
,  and for the 

case of 𝑛 is even, we also obtain that 

 

𝜆𝑚+1 = 𝜆𝑛
2
=∑𝑢𝑡

𝑛

𝑡=0

𝜔
𝑛
2
𝑡 =∑(−1)𝑡 𝑢𝑡

𝑛

𝑡=0

=
−𝑛𝑑

2
. 

 

Next, for 𝑘 = 1, 2,⋯ ,𝑚, notice that 

 

         𝜆𝑘 + 𝜆𝑛−𝑘 =∑𝑢𝑡

𝑛−1

𝑡=0

(𝜔𝑡𝑘 + 𝜔𝑡(𝑛−𝑘)) = 2𝑎 +∑𝑢𝑡

𝑛−1

𝑡=1

(𝜔𝑡𝑘 +𝜔−𝑡𝑘)

= 2𝑎 +∑(𝑢𝑡 + 𝑢𝑛−𝑡)

𝑚

𝑡=1

(𝜔𝑡𝑘 + 𝜔−𝑡𝑘) 

 

and applying Equation (4), we have 

 

   𝜆𝑘 + 𝜆𝑛−𝑘 = 2𝑎 + 2∑(2𝑎 + 𝑛𝑑) cos( 𝑡𝑘𝜃)

𝑚

𝑡=1

= 2(𝑎 + (2𝑎 + 𝑛𝑑)∑cos( 𝑡𝑘𝜃)

𝑚

𝑡=1

) 

 

 

(5) 

 

If n is even, 

𝜆𝑘 + 𝜆𝑛−𝑘 = 2𝑎 + ∑(𝑢𝑡 + 𝑢𝑛−𝑡)(𝜔
𝑠𝑘 + 𝜔−𝑠𝑘) + 2(−1)𝑘𝑢𝑛

2
𝜆𝑘 + 𝜆𝑛−𝑘

𝑚

𝑡=1

= 2(𝑎 + (−1)𝑘(𝑎 + (𝑚 − 1)𝑑) + (2𝑎 + 𝑛𝑑) ∑ cos(𝑡𝑘𝜃)

𝑚

(𝑡=1)

) 

 

 

 

(6) 

 

Analogously, consider that 

 

𝜆𝑘  − 𝜆𝑛−𝑘 = ∑𝑢𝑡

𝑛−1

𝑡=0

(𝜔𝑡𝑘 − 𝜔𝑡(𝑛−𝑘)) = ∑𝑢𝑡

𝑛−1

𝑡=1

(𝜔𝑡𝑘 − 𝜔−𝑡𝑘)  

=∑(𝑢𝑡 + 𝑢𝑛−𝑡)(𝜔
𝑡𝑘 − 𝜔−𝑡𝑘)

𝑚

𝑡=1
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Then applying Equation (4), 

 

𝜆𝑘 − 𝜆𝑛−𝑘 = −2𝑑𝑖∑(𝑛 − 2𝑡) sin(𝑡𝑘𝜃)

𝑚

𝑡=1

.      
 

(7) 

 

By adding Equation (7) to (5) and subtracting Equation (7) from (5), we have  

 

𝜆𝑘 = 𝑅𝑘 + 𝑖𝐶𝑘 

𝜆𝑛−𝑘 = 𝑅𝑘 − 𝑖𝐶𝑘 

 

where 

 

𝑅𝑘 = 𝑎 + (2𝑎 + 𝑛𝑑)∑cos(𝑡𝑘𝜃)

𝑚

𝑡=1

 

𝐶𝑘 = −𝑑∑(𝑛 − 2𝑡) sin(𝑡𝑘𝜃) 

𝑚

𝑡=1

 

 

Then applying Lemma 2, we obtain that 𝑅𝑘 =
−𝑛𝑑

2
.  If 𝑛 is odd, by adding Equations (7) 

to (6) and applying Lemma 2, we also obtain 

 

𝑅𝑘 = 𝑎 + (−1)
𝑘(𝑎 + (𝑚 + 1)𝑑) + (2𝑎 + 𝑛𝑑) (−

1

2
+
(−1)𝑘+1

2
 )  

= −
𝑛𝑑

2
+ (−1)𝑘 (𝑎 +

𝑛𝑑

2
) + (−1)𝑘+1 (𝑎 +

𝑛𝑑

2
) 

 

This simplifies to 
−𝑛𝑑

2
.  

 

5 Computational Remarks 

In the following, we present a simple illustration of how to apply the formulations 

in Theorem 3. Then, by considering that illustration, we construct an efficient algorithm 

to compute the eigenvalues. 

 

Example 1. (Illustration) For the matrix 𝐴2,3,5 we have 𝑎 = 3, 𝑛 = 5,𝑚 = 2, and 

𝜃 =
2𝜋

5
. Then 

 

𝜆0 =
(5(2×2+4×3))

2
= 40, 𝑅 =

−5×3

2
= −7.5 

 

so that 𝜆1 = −7.5 + 𝐶1𝑖 and 𝜆4 = 𝜆1̅̅̅, 𝜆2 = −7.5 + 𝐶2𝑖 and 𝜆3 = 𝜆2̅̅ ̅ where 

 

𝐶1 = −3(3 sin
2𝜋

5
+ sin

4𝜋

5
) ≈ −10.32 
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𝐶2 = −3(3 sin
4𝜋

5
+ sin

8𝜋

5
) − 2√3 ≈ −2.44 

 

For the matrix 𝐴3,2,6, we have 𝑎 = 3, 𝑑 = 2, 𝑛 = 6,𝑚 = 2, 𝑎𝑛𝑑 𝜃 =
𝜋

3
. Then 

 

𝜆0 =
6(2×3+5×2)

2
= 48, 𝜆3 =

−6×2

2
= −6 

 

Furthermore, 𝜆1 = −6 + 𝐶1𝑖 and 𝜆5 = 𝜆1̅̅̅,  𝜆2 = −6 + 𝐶2𝑖 and 𝜆4 = 𝜆2̅̅ ̅ where 

 

𝐶1 = −2(4 sin
𝜋

3
+ 2 sin

2𝜋

3
 ) = −6√3 ≈ −10.39 

𝐶2 = −2(4 sin
2𝜋

3
+ 2 sin

4𝜋

3
) = −2√3 ≈ −3.46 

 

From the above illustration, it is easy to verify that only 𝑚 = ⌊
𝑛−1

2
⌋ eigenvalues are 

calculated iteratively, each of those iterative computations needs only m iterations. 

Besides, we can also see that all those computations did not involve any arithmetic of 

complex numbers. Thus, we can conclude that the computations of eigenvalues must be 

much faster than the computations based on the general formula as presented in Equation 

(1). 

 

Algorithm 1.  

INPUT  : 𝐴𝑎,𝑑,𝑛 is the circulant matrix with arithmetic numbers. 

OUTPUT : 𝜆0, 𝜆1, ⋯ , 𝜆𝑛−2, 𝜆𝑛−1 are the eigenvalues of 𝐴𝑎,𝑑,𝑛. 

1.   𝑚 ← ⌊
𝑛−1

2
⌋ ;  𝜃 ←

2𝜋

𝑛
; 𝜆0 ←

𝑛(2𝑛+(𝑛−1)𝑑)

2
;   𝑅 ←

−𝑛𝑑

2
; 

2.  if (𝑛 mod 2) = 0  then 𝜆𝑚+1 ← 𝑅  end if; 

3.  for 𝑘 = 1 to 𝑚 do 

           𝐶 ← 0;  𝑆 ← 0;  𝑇 ← 𝑘𝜃; 
         for 𝑡 = 1 to 𝑚 do  

                      𝑆 ← 𝑆 + 𝑇;  𝑠 ← sin 𝑆 ;   𝑦 ← (𝑛 − 2𝑡)𝑠;  𝐶 ← 𝐶 + 𝑦; 
           end do; 

          𝐶 ← −𝑑𝐶;  𝜆𝑘 ← 𝑅 + 𝐶. i;  𝜆𝑛−𝑘 ← 𝑅 − 𝐶. i; 
         end do; 

4.  return( 𝜆0, 𝜆1, ⋯ , 𝜆𝑛−2, 𝜆𝑛−1 ). 
 

6 Conclusion  

The formulations for the eigenvalues, inverse, and determinant of a circulant matrix 

with arithmetic sequences are formulated in a simple way. The formulation method to 

derive the inverse and determinant is applying elementary operations of row or column 

to get a simpler equivalent matrix such that the formulations are easy to be derived. For 

the eigenvalues formulation, the previous result for the general case of circulant matrices 

can be simplified by exploiting the properties of the cyclic group induced by the set of all 

roots of 𝑥𝑛 − 1 = 0 as the set of points in the unit circle in the complex plane, and also 

by considering the speciality of the arithmetic sequence. Then, we construct an algorithm 

for those eigenvalues formulation, and this algorithm shows a better computation 
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compared to the previously known result for the general case of circulant matrices. We 

believe that the methods proposed in this article can be applied for any type of circulant 

matrices (such as left circulant, skew circulant or more general r-circulant) involving  any 

type of sequence of numbers (such as Geometric, Harmonic, Pell, Lucas, Fibonacci, etc.) 

which become our research topics in the near future. 
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