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Abstract. The Klee-Minty problem is explored in this paper.
The coordinates formulas of all vertices of the Klee-Minty cube
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Klee-Minty path. We explore these structures.
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1. Introduction

The Klee-Minty (KM) problem is a problem that had been presented
by Klee and Minty in [3]. The n-dimensional KM problem is given by:

min yn

subject to ρyk−1 ≤ yk ≤ 1− ρyk−1, k = 1, . . . , n,
(1)

where ρ is small positive number by which the unit cube [0, 1]n is
squashed, and y0 = 0. The domain (we denote as Cn), which is called
KM-cube, is a perturbation of the unit cube in Rn. If ρ = 0 then
the domain is the unit cube and for ρ ∈ (0, 1

2
) it is a perturbation

of the unit cube which is contained in the unit cube itself. Since the
perturbation is small, the domain has the same number of vertices as
the unit cube, i.e. 2n.
The KM-problem has become famous because Klee and Minty found

a pivoting rule such that the simplex method requires 2n− 1 iterations
to solve the problem (1).

yk−1 ≤ yk ≤ 1− yk−1

In this paper, we explore the KM problem further. We provides for-
mulas for the coordinates of all vertices of the KM cube, and discuss
the subset representation of the vertices of the KM cube. Then we

1



2 BIB PARUHUM SILALAHI

describe the KM path. We show that when using the subset represen-
tation, the KM path can easily be constructed by using the so-called
flipping operation. It turns out that there are rich structures in the
KM path. We explore these structures.

2. Vertices of the Klee-Minty cube

With the n-dimensional KM problem as defined in (1), we define the
slack vectors s and s̄ according to

sk = yk − ρyk−1, k = 1, . . . , n, (2)

s̄k = 1− yk − ρyk−1, k = 1, . . . , n. (3)

For any vertex of the KM cube we have either sk = 0 or s̄k = 0, for each
k. As a consequence, each vertex can be characterized by the subset
of the index set I= {1, 2, . . . , n} consisting of the indices k for which
s̄k vanishes (and hence sk is positive). Therefore, given a vertex v we
define

Sv = {k : s̄k = 0} ≡ {k : sk > 0} .
Note that the KM cube has 2n vertices. Since 2n is also the number
of subsets of the index set I, each subset S of the index set uniquely
determines a vertex. We denote this vertex as vS. Given S, the co-
ordinates of vS in the y-space can easily be solved from (2) and (3),
because we then have s̄k = 0 if k ∈ S and sk = 0 if k /∈ S, which yields
n equations in the entries of the vector y. When defining y0 = 0 and
y = vS, one easily deduces that

yk =

{
1− ρyk−1, k ∈ S,

ρyk−1, k /∈ S.
(4)

Since y0 = 0, we have y1 ∈ {0, 1}. This together with (4) implies that
yk is a polynomial in ρ whose degree is at most k − 1. Moreover, the
coefficients of this polynomial take only the values 0, 1 and −1, and
the nonzero coefficients alternate between 1 and −1. Finally if yk �= 0
then the lowest degree term has coefficient 1.
We can be more specific. Let

S = {s1, s2, . . . , sm} , s0 = 0 < s1 < s2 < . . . < sm < sm+1 := n+1.

Then the entries of y are given by the following lemma. In this lemma
we define an empty sum to be equal to zero.

Lemma 1. One has

ysi =
i∑

j=1

(−1)i+jρsi−sj , 0 ≤ i ≤ m, (5)

and
yk = ρk−siysi , si < k < si+1, k /∈ S. (6)
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Proof. If k /∈ S then the definition of S implies that si < k < si+1 for
some i, with 0 ≤ i ≤ m. It follows from (4) that in that case

yk = ρyk−1 = . . . = ρk−si−1ysi+1 = ρk−siysi ,

proving (6).
So it remains to prove (5). The proof uses induction with respect to

the index i in (5). Before entering this proof it may be worth noting
that (5) expresses ysi as a polynomial in ρ of degree si−s1. The lowest
degree term occurs for j = i, and hence this term equals (−1)2iρ0 = 1.
For i = 0 the sum in (5) becomes empty, whence we obtain y0 = 0,

as it should. This proves that (5) holds if i = 0. Now assume that (5)
holds for some i, with 0 ≤ i < m. Since si+1 ∈ S, according to (4) we
have

ysi+1
= 1− ρysi+1−1. (7)

At this stage we need to distinguish two cases: si+1 − 1 ∈ S (case I)
and si+1 − 1 /∈ S (case II).
In case I we must have si+1−1 = si. Since (5) holds for ysi it follows

from (7) that

ysi+1
= 1− ρysi = 1− ρ

∑i
j=1(−1)i+jρsi−sj

= 1−∑i
j=1(−1)i+jρsi+1−sj

= 1 +
∑i

j=1(−1)i+1+jρsi+1−sj .

In case II we may use (6), which gives

ysi+1−1 = ρsi+1−1−siysi = ρsi+1−1−si
∑i

j=1(−1)i+jρsi−sj

=
∑i

j=1(−1)i+jρsi+1−1−sj ,

whence (7) yields that

ysi+1
= 1− ρ

i∑
j=1

(−1)i+jρsi+1−1−sj = 1 +
i∑

j=1

(−1)i+1+jρsi+1−sj .

We conclude that in both cases we have

ysi+1
= 1 +

i∑
j=1

(−1)i+1+jρsi+1−sj =
i+1∑
j=1

(−1)i+1+jρsi+1−sj ,

which completes the proof. �

3. The Klee-Minty path

As already mentioned previously, Klee and Minty found a pivoting
rule such that the simplex method requires 2n−1 iterations to solve the
problem (1). This implies that the method passes through all vertices
of the KM cube before finding the optimal vertex (which is of course
the zero vector). We call this path along all vertices the KM path. It
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is well known in which order the vertices are visited. This can be easily
described by using the subset representation of the vertices introduced
in the previous section. The path starts at vertex (0, . . . , 0, 1) whose
subset is the subset S1 = {n}. The subsequent subsets are obtained by
an operation which we call flipping an index with respect to a subset
S [4]. Given a subset S and an index i, flipping i (with respect to S)
means that we add i to S if i /∈ S, and remove i from S if i ∈ S. Now
let Sk denote the subset corresponding to the k-th vertex on the KM
path. Then Sk+1 is obtained from Sk as follows:

• if |Sk| is odd, then flip 1;
• if |Sk| is even, then flip the element following the smallest ele-
ment in Sk.

Denoting the resulting sequence as Pn, we can now easily construct the
KM path for small values of n:

P1 : {1} → ∅
P2 : {2} → {1, 2} → {1} → ∅
P3 : {3} → {1, 3} → {1, 2, 3} → {2, 3} → P2

P4 : {4} → {1, 4} → {1, 2, 4} → {2, 4} → {2, 3, 4} → {1, 2, 3, 4}
→ {1, 3, 4} → {3, 4} → P3.

Table 1 shows the subsets and the corresponding vectors y for the
KM path for n = 4. The corresponding tables for n = 2 and n = 3 are
subtables, as indicated. Note that if subsets S and S ′ differ only in n,
and y = vS and y′ = vS′ , then we have

yi = y′i, 1 ≤ i < n, yn + y′n = 1.

Obviously, the subsets of two subsequent vertices differ only in one
element. For the corresponding subsets, Sk and Sk+1 say, we denote
this element by ik. Then we have s̄ik = 0 in one of these vertices, and
in the other vertex s̄ik > 0, or equivalently sik = 0. On the interior of
the edge connecting these two vertices we will have sik > 0 and s̄ik > 0.
If n = 4 then, when following the KM path, the flipping index ik runs
through the following sequence:

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1.

So if n = 4 then the flipping index 8 times equals 1, 4 times 2, 2 times
3, and once 4.
Table 2 shows the slack vector s and Table 3 the slack vector s̄ for

each of the vertices. For a graphical illustration (with n = 3) we refer
to Figure 1.

4. Sequence of vertices in the Klee-Minty path

One easily observes that for n ∈ {2, 3, 4}, the second half of Pn is
just Pn−1 whereas the first half of Pn arises by reversing the order of the
sequence Pn−1 and adding the element n to each sets in the resulting
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S y1 y2 y3 y4

{4} 0 0 0 1

{1, 4} 1 ρ ρ2 1− ρ3

{1, 2, 4} 1 1− ρ ρ− ρ2 1− ρ2 + ρ3

{2, 4} 0 1 ρ 1− ρ2

{2, 3, 4} 0 1 1− ρ 1− ρ+ ρ2

{1, 2, 3, 4} 1 1− ρ 1− ρ+ ρ2 1− ρ+ ρ2 − ρ3

{1, 3, 4} 1 ρ 1− ρ2 1− ρ+ ρ3

{3, 4} 0 0 1 1− ρ

{3} 0 0 1 ρ

{1, 3} 1 ρ 1− ρ2 ρ− ρ3

{1, 2, 3} 1 1− ρ 1− ρ+ ρ2 ρ− ρ2 + ρ3

{2, 3} 0 1 1− ρ ρ− ρ2

{2} 0 1 ρ ρ2

{1, 2} 1 1− ρ ρ− ρ2 ρ2 − ρ3

{1} 1 ρ ρ2 ρ3

∅ 0 0 0 0

Table 1. The KM path (in the y-space) for n = 4.

sequence. Hence, when denoting the first half of Pn as P̄ n
n−1 we have

for n ∈ {2, 3, 4} that Pn = P̄ n
n−1 → Pn−1. Indeed, when defining P0 = ∅

then this pattern holds for each n ≥ 1, as stated in the following lemma.

Lemma 2. For n ≥ 1, one has

Pn : P̄ n
n−1 → Pn−1. (8)

Proof. The proof uses induction with respect to n. We already know
that the lemma holds if n ≤ 4. Therefore, (8) holds if n = 1. Suppose
that n ≥ 2. Let Sk denote the k-th subset in the sequence Pn−1. By
the induction hypothesis we have S1 = {n− 1} and S2n−1 = ∅. The
first set in Pn is the set {n} = {n} ∪ S2n−1 . For 2 ≤ k ≤ 2n−1, we
consider the set S = Sk ∪ {n} and we show below that its successor
is the set Sk−1 ∪ {n}. This will imply that the 2n−1-th set in Pn is
S1 ∪ {n} = {n− 1, n}, whose successor is the set {n− 1}, the first set
of Pn−1. This makes clear that it suffices for the proof of the lemma if
we show that for each set Sk in Pn−1 the successor of Sk ∪ {n} is the
set Sk−1 ∪ {n}. This can be shown as follows.
If |S| is even then the successor of S in Pn arises by flipping the

element following the smallest element in S. If this smallest element
equals n−1 then we must have S = {n− 1, n}, and then the successor
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S s1 s2 s3 s4
{4} 0 0 0 1

{1, 4} 1 0 0 1− 2ρ3

{1, 2, 4} 1 1− 2ρ 0 1− 2ρ2 + 2ρ3

{2, 4} 0 1 0 1− 2ρ2

{2, 3, 4} 0 1 1− 2ρ 1− 2ρ+ 2ρ2

{1, 2, 3, 4} 1 1− 2ρ 1− 2ρ+ 2ρ2 1− 2ρ+ 2ρ2 − 2ρ3

{1, 3, 4} 1 0 1− 2ρ2 1− 2ρ+ 2ρ3

{3, 4} 0 0 1 1− 2ρ

{3} 0 0 1 0

{1, 3} 1 0 1− 2ρ2 0

{1, 2, 3} 1 1− 2ρ 1− 2ρ+ 2ρ2 0

{2, 3} 0 1 1− 2ρ 0

{2} 0 1 0 0

{1, 2} 1 1− 2ρ 0 0

{1} 1 0 0 0

∅ 0 0 0 0

Table 2. The KM path (in the s-space) for n = 4.

of S is the set {n− 1} = S1, which is the first element of Pn−1. Other-
wise the smallest element is at most n− 2, and then, since |Sk| is odd,
the successor of S is equal to Sk−1 ∪ {n}. The latter follows since S
and Sk−1 have the same smallest element and |Sk−1| is even.
If |S| is odd then the successor of S in Pn arises by flipping 1. Since

|Sk| is even flipping 1 yields the predecessor of Sk in Pn−1, which is
Sk−1. Hence we find again that the successor of S is Sk−1 ∪ {n}. This
completes the proof. �
According to this lemma, the index i that occurs K times as flipping
index in Pn−1 will occur 2K times in Pn, i.e. K times in P̄ n

n−1 and K
times in Pn−1. The index n flips only at the last set in P̄ n

n−1, which gives
the first set in Pn−1. These sets are {n− 1, n} \ {0} and {n− 1} \ {0}
respectively. The complement operation of {0} is applied to adjust
for the case where n = 1. As an immediate consequence we have the
following corollary.

Corollary 1. The index i, 1 ≤ i ≤ n, never flips in Pk, for 0 ≤ k < i.
It flips for the first time in Pi when applied to the set {i− 1, i} \ {0},
which yields the set {i− 1} \ {0} .
From Lemma 2, for 0 ≤ i < n, we can obtain

Pn : P̄ n
n−1 → P̄ n−1

n−2 → . . . → P̄ i+1
i → Pi. (9)
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S s̄1 s̄2 s̄3 s̄4

{4} 1 1 1 0

{1, 4} 0 1− 2ρ 1− 2ρ2 0

{1, 2, 4} 0 0 1− 2ρ+ 2ρ2 0

{2, 4} 1 0 1− 2ρ 0

{2, 3, 4} 1 0 0 0

{1, 2, 3, 4} 0 0 0 0

{1, 3, 4} 0 1− 2ρ 0 0

{3, 4} 1 1 0 0

{3} 1 1 0 1− 2ρ

{1, 3} 0 1− 2ρ 0 1− 2ρ+ 2ρ3

{1, 2, 3} 0 0 0 1− 2ρ+ 2ρ2 − 2ρ3

{2, 3} 1 0 0 1− 2ρ+ 2ρ2

{2} 1 0 1− 2ρ 1− 2ρ2

{1, 2} 0 0 1− 2ρ+ 2ρ2 1− 2ρ2 + 2ρ3

{1} 0 1− 2ρ 1− 2ρ2 1− 2ρ3

∅ 1 1 1 1

Table 3. The KM path (in the s̄-space) for n = 4.

According to Corollary 1, index i is flipped for the first time in Pi,
hence we have the next corollary.

Corollary 2. The index i flips for the last time in Pn at the set
{i− 1, i} \ {0}, which yields the set {i− 1} \ {0}.
The sequence P̄ n

n−1 is equal to the sequence which is obtained by
reversing the sequence

P̄ n−1
n−2 → . . . → P̄ i+1

i → Pi

and by adding the element n to each sets in the resulting sequence.
Thus the next corollary follows.

Corollary 3. The index i flips for the first time in Pn at the set
{i− 1, n} \ {0}, which yields the set {i− 1, i, n} \ {0}.
Moreover, by letting Ji be any subset of I\ {1, . . . , i}, we have the
following corollary.

Corollary 4. The index i flips in Pn when it is applied to either

{i− 1, i} \ {0} ∪ Ji or {i− 1} \ {0} ∪ Ji.

Proof. Let us consider Pn as in (9). The flipping indexes of two sets that
connecting two sequences of sets consecutively are n, n−1, . . . , i+1. In
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y1

y2

y3

{3}

{1, 3}
{1, 2, 3}

{2, 3}

{2}

{1, 2}
{1}

∅

1
1− ρ2

1− ρ+ ρ2

1− ρ

ρ
ρ− ρ2

ρ2

0
0 ρ 1− ρ 1

Figure 1. Unit cube (red dashed), KM cube (blue
dashed) and KM path (blue solid) for n = 3.

this case there is no index which is equal to i. In Pi, flipping an index i
is only applied to the set {i− 1, i}\{0} which yield the set {i− 1}\{0}.
Let us call the pair of two sets, where an index i is flipped with respect
to one of the sets and another one is its successor, as pair of sets with
flipping index i. Generally, the pairs of sets with flipping index i that
appear in P̄ k+1

k , k ≥ i, definitely equal to pairs of sets which is resulted
from the union of each set of pair of sets with flipping index i in Pk by
{k + 1}. By taking Ji as any subset of I\ {1, . . . , i}, we obtain that
the pairs of sets with flipping index i in Pn are {i− 1, i} \ {0}∪ Ji and
{i− 1} \ {0} ∪ Ji. This implies the corollary. �
The following corollary expresses how many times the index i is

flipped in Pn . We have discussed this number for small value of n
previously.

Lemma 3. The index i, 1 ≤ i ≤ n, is flipped in Pn exactly

2n−i times.
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Proof. The index n is flipped only 1 time in Pn. By using the recursive
pattern of Pn as in Lemma 2 and Corollary 1, in Pn, the index⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n− 1 , is flipped 2 times,
n− 2 , is flipped 4 times,

...
n− k , is flipped 2k times,

...
1 , is flipped 2n−1 times.

The lemma follows by taking i = n− k. �
When n is given, the set Sk is uniquely determined by k, and vice

versa. Moreover, for each k (2 ≤ k ≤ 2n), the sets Sk−1 and Sk

differ only in one element. This means that the sequence Pn defines
a so-called Gray code. Such codes have been studied thoroughly, also
because of their many applications.1 It may be worth mentioning some
results from the literature that make the one-to-one correspondence
between k and Sk more explicit. The next proposition is the main
result (Theorem 6(ii)) in [1].2

Proposition 1. One has i ∈ Sk if and only if⌊
2n − k

2i
+

1

2

⌋
mod 2 = 1. (10)

Given k, by computing the left-hand side expression in (10) for i =
1, 2, . . . , n we get the set Sk. Conversely, when Sk is given we can
find k (also in n iterations) by using Corollary 24 in [1]. This goes as
follows. We first form the binary representation bn . . . b2b1 of Sk, with
bi = 1 if i ∈ Sk and bi = 0 otherwise. We then replace bi by 0 if the
number of 1’s in bn . . . b2b1 to the left of bi (including bi itself) is even,
and by 1 if this number is odd. The resulting binary n-word an . . . a2a1
is the binary representation of some natural number, let it be K. Then
k = 2n −K. For example, let Sk = {2, 3} and n = 4. Then

Sk ≡ bn . . . b2b1 = 0110 → an . . . a2a1 = 0100 ≡ 4 → k = 24 − 4 = 12,

which is in accordance with Table 1.

1Gray codes were first designed to speed up telegraphy, but now have numerous
applications such as in addressing microprocessors, hashing algorithms, distributed
systems, detecting/correcting channel noise and in solving problems such as the
Towers of Hanoi, Chinese Ring and Brain and Spinout.

2It simplifies an earlier result in [2], namely

i ∈ Sk ⇔
(

2n − 2i−1 − 1⌊
2n − 2i−2 − 2n+1−k

2

⌋
)
mod 2 = 1.
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5. Edges of the Klee-Minty path

An edge of the KM path in Cn is a line segment connecting two
consecutive vertices of the KM path. As before, we represent the k-th
vertex on the KM path by the set Sk. The edge connecting Sk and
Sk+1 is denoted as enk . The set of all edges of the n-dimensional KM
path, denoted by En, is therefore given by

En =
2n−1⋃
k=1

enk . (11)

Remember that Sk and Sk+1 differ only in one element, which we denote
as ik. On the interior of the edge connecting these two vertices we have
sik > 0 and s̄ik > 0. For any j �= ik, we have s̄j = 0 if j ∈ Sk ∩ Sk+1

and sj = 0 otherwise. So it follows that if j �= ik then either sj = 0 on
enk or s̄j = 0 on enk .
For ik �= 1, we have either s1 = 0 or s̄1 = 0, which implies either

y1 = 0 or y1 = 1 on enk . Since for any j < ik we have either sj = 0 or
s̄j = 0 on enk , we may conclude that yj is constant on enk . Summarizing,
we may state that on enk we have the following properties:

(i) sik > 0 or s̄ik > 0,
(ii) j �= ik : s̄j = 0 or sj = 0,
(iii) 1 ≤ j < ik : yj is constant.

Table 4 and Table 5 shows the slack vector s and s̄ on enk for n = 4.
The subtables show s and s̄ for n = 1, n = 2 and n = 3.

We therefore can describe the edge enk as follows

enk = {y ∈ Cn : for any j �= ik, s̄j = 0 if j ∈ Sk∩Sk+1, sj = 0 otherwise}.
Or, in other words, since

Sk ∪ Sk+1 = (Sk ∩ Sk+1) ∪ {ik}, 1 ≤ k < 2n,

we may write

enk =

⎧⎨
⎩

y ∈ Cn :
s̄j = 0 if j ∈ Sk ∩ Sk+1,
sj = 0 if j /∈ Sk ∪ Sk+1

⎫⎬
⎭ . (12)

Further elaborating (iii) we get the following lemma.

Lemma 4. Let ik be the flipping element for Sk, then on enk for 1 ≤
j < ik one has

yj =

{
1 , j = ik − 1,
0 , otherwise.
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Proof. The only different element in Sk and Sk+1 definitely is the index
ik that we flip in the set Sk. According to Corollary 4, the only different
element ik happens in pair of sets {ik − 1, ik} \ {0}∪Jik and {ik − 1} \
{0} ∪ Jik , where Jik is any subset of I\ {1, . . . , ik} . This means that
on the edge connecting Sk and Sk+1 we have

s1 = 0, s2 = 0, . . . , sik−2 = 0, s̄ik−1 = 0.

From s1 = 0 we get y1 = 0. Then subsequently we get y2 = 0, . . . , yik−2 =
0, yik−1 = 1 from s2 = 0, . . . , sik−2 = 0, s̄ik−1 = 0, which proves the
lemma. �
One may use Table 1 to verify Lemma 4 for n ≤ 4.
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