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Abstract. Convergence of MSE (Mean-Squared-Error) of a uni-
form kernel estimator for intensity of a periodic Poisson process
with unknowm period is presented and proved. The result pre-
sented here is a special case of the one in [3]. The aim of this
paper is to present an alternative and a relatively simpler proof of
convergence for the MSE of the estimator compared to the one in
[3]. This is a joint work with R. Helmers and R. Zitikis.
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1. Introduction

In this paper, convergence of MSE (Mean-Squared-Error) of a uni-
form kernel estimator for intensity of a periodic Poisson process with
unknowm period is presented and proved. More general results which
using general kernel function can be found in [3] and chapter 3 of [4].
Let X be a Poisson process on [0;1) with (unknown) locally inte-

grable intensity function �. We assume that � is a periodic function
with unknown period � . We do not assume any parametric form of �,
except that it is periodic. That is, for each point s 2 [0;1) and all
k 2 Z, with Z denotes the set of integers, we have

�(s+ k�) = �(s): (1.1)

Suppose that, for some ! 2 
, it is only available a single realization
X(!) of the Poisson process X de�ned on a probability space (
;F ;P)
with intensity function � is observed, though only within a bounded
interval [0; n]. Then, a uniform kernel estimator for � at a given point
s 2 [0; n] using only a single realization X(!) of the Poisson process X
observed in interval [0; n] is presented. (The requirement s 2 [0; n] can
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be dropped if we know the period � .) Our goals are (a) To determine
conditions for having that MSE of this estimator converges to zero, as
n!1. (b) To present a relatively simpler proof of convergence of the
MSE of this estimator compared to the one in [3].
Since � is a periodic function with period � , the problem of estima-

ting � at a given point s 2 [0; n] can be reduced into a problem of
estimating � at a given point s 2 [0; �). Hence, for the rest of this
paper, we assume that s 2 [0; �).
Throughout this paper it is assumed that s is a Lebesgue point of �,

that is we have

lim
h#0

1

2h

Z h

�h
j�(s+ x)� �(s)jdx = 0

(e.g. [7], p.107-108). This assumption is a mild one since the set of
all Lebesgue points of � is dense in R, whenever � is assumed to be
locally integrable.
Let �̂n be any consistent estimator of the period � , that is,

�̂n
p! � ;

as n ! 1. For example, one may use the estimators constructed in
[2] or perhaps the estimator investigated by [6] or [1]. Let also hn be a
sequence of positive real numbers converging to 0, that is,

hn # 0 (1.2)

as n ! 1. With these notations, we may de�ne an estimator of �(s)
as

�̂n(s) :=
�̂n
n

1X
k=�1

1

2hn
X ([s+ k�̂n � hn; s+ k�̂n � hn] \ [0; n]) : (1.3)

The idea behind the construction of the estimator �̂n(s) given in (1.3)
can be found e.g. in [5].

2. Results

In this section, we focus on convergence of the MSE of �̂n. To obtain
our results it is needed an assumption on the estimator �̂n of � : there
exists constant C > 0 and positive integer n0 such that, for all n � n0

P

�
n

an
j�̂n � � j � C

�
= 1

for some �xed sequence an # 0. The shorthand notation for this as-
sumption will be :

n j�̂n � � j = O(an)
with probability 1, as n!1.
The main results of this paper are the following theorems.
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Theorem 2.1. Suppose that � is periodic and locally integrable. If, in
addition, (1.2) holds, and

n j�̂n � � j = O (�nhn) (2.1)

with probability 1 as n!1, for some �xed sequence �n # 0 as n!1,
then

E�̂n(s) ! �(s) (2.2)

as n ! 1, provided s is a Lebesgue point of �. In other words, �̂n(s)
is an asymptotically unbiased estimator of �(s).

Note that the requirement nhn ! 1 as n ! 1, which is needed
to obtain weak consistency of �̂n (cf. [5]), is not needed to establish
asymptotic unbiasedness of �̂n, i.e. (2.2).

Theorem 2.2. Suppose that � is periodic and locally integrable. If, in
addition, (1.2) and (2.1) hold true and

nhn !1 (2.3)

as n!1, then

V ar
�
�̂n(s)

�
= o(1) (2.4)

as n!1, provided s is a Lebesgue point of �.

By Theorem 2.1 and Theorem 2.2 we obtain the following corollary.

Corollary 2.3. Suppose that � is periodic and locally integrable. If
conditions (1.2), (2.1) and (2.3) hold true, then

MSE
�
�̂n(s)

�
= V ar

�
�̂n(s)

�
+Bias2

�
�̂n(s)

�
! 0 (2.5)

as n!1, provided s is a Lebesgue point of �.

3. Proof of Theorem 2.1

We begin with two simple lemmas, which will be useful in establish-
ing our results.

Lemma 3.1. Suppose that � is periodic and locally integrable. If the
bandwidth hn be such that (1.2) holds true, then

E
�

n

1X
k=�1

1

2hn
X (Bhn(s+ k�) \ [0; n])! �(s) (3.1)

as n!1, provided s is a Lebesgue point of �.
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Proof: Using the fact that X is Poisson, the l.h.s. of (3.1) can be
written as

�

n

1X
k=�1

1

2hn

Z hn

�hn
�(s+ k� + x)I(s+ k� + x 2 [0; n])dx

=
�

2nhn

Z hn

�hn
�(s+ x)

1X
k=�1

I(s+ k� + x 2 [0; n])dx: (3.2)

Now note that�n
�
� 1
�
�

1X
k=�1

I(s+ k� + x 2 [0; n]) �
�n
�
+ 1
�
;

which implies
�

n

1X
k=�1

I(s+ k� + x 2 [0; n])

can be written as (1 +O(n�1)), as n!1, uniformly in x. Then, the
quantity on the r.h.s. of (3:2) can be written as�

1 +O
�
1

n

��
1

2hn

Z hn

�hn
�(s+ x)dx: (3.3)

By (1.2) together with the assumption that s is a Lebesgue point of �,
we have that

(2hn)
�1
Z hn

�hn
�(s+ x)dx = �(s) + o(1);

as n ! 1. Then we obtain this lemma. This completes the proof of
Lemma 3.1.

Lemma 3.2. Suppose that the assumption (2.1) is satis�ed. Then, for
each positive integer m, we have that

E (�̂n � �)2m = O
�
n�2m�2mn h

2m
n

�
(3.4)

as n!1.

Proof: By the assumption (2.1), there exists large positive constant
C and positive integer n0 such that

j�̂n � � j � Cn�1�nhn; (3.5)

with probability 1, for all n � n0. Then, the l.h.s. of (3:4) can be
written as Z 1

0

x2mdP (j�̂n � � j � x)

= �
Z Cn�1�nhn

0

x2mdP (j�̂n � � j > x) : (3.6)
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By partial integration, the r.h.s. of (3:6) is equal to

�x2mP (j�̂n � � j > x) jCn
�1�nhn

0

+2m

Z Cn�1�nhn

0

P (j�̂n � � j > x)x2m�1dx: (3.7)

The �rst term of (3:7) is equals to zero, while its second term is at
most equal to

2m

Z Cn�1�nhn

0

x2m�1dx = C2mn�2m�2mn h
2m
n

= O
�
n�2m�2mn h

2m
n

�
; (3.8)

as n!1. This completes the proof of Lemma 3.2.

Proof of Theorem 2.1

We will prove (2.2) by showing

E�̂n(s) = �(s) + o(1); (3.9)

as n!1. First we write E�̂n(s) as 
E�̂n(s)� E

�

n

1X
k=�1

1

2hn
X (Bhn(s+ k�̂n) \ [0; n])

!

+
�

2nhn

 
E

1X
k=�1

X (Bhn(s+ k�̂n) \ [0; n])

�E
1X

k=�1

X (Bhn(s+ k�) \ [0; n])
!

+E
�

n

1X
k=�1

1

2hn
X (Bhn(s+ k�) \ [0; n]) : (3.10)

By Lemma 3.1, we have that the third term of (3.10) is equal to �(s)+
o(1), as n ! 1. Hence, to prove (3.9), it remains to check that both
the �rst and second terms of (3.10) are o(1), as n!1.
First we consider the �rst term of (3.10). The absolute value of this

term can be written as

1

2nhn

�����E (�̂n � �)
1X

k=�1
X (Bhn(s+ k�̂n) \ [0; n])

�����
� 1

2nhn

�
E (�̂n � �)2

� 1
2

0@E 1X
k=�1

X (Bhn(s+ k�̂n) \ [0; n])
!21A 1

2

;

(3.11)
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(by Cauchy-Schwarz inequality). By Lemma 3.2 with m = 1 (we take
�n = 1), we have that the square-root of the �rst expectation on the
r.h.s. of (3.11) is of order O(n�1hn), as n ! 1. For large n, by (1.2)
and (2.1), the intervals (Bhn(s+ k�̂n) \ [0; n]) and (Bhn(s+ j�̂n) \ [0; n])
are disjoint with probability 1, provided k 6= j. Hence, for large n, we
have with probability 1 that

1X
k=�1

X (Bhn(s+ k�̂n) \ [0; n]) � X([0; n]): (3.12)

Then the square-root of the second expectation on the r.h.s. of (3.11)

does not exceed (EX2([0; n]))
1
2 = O (n), as n ! 1. Hence, we have

that the r.h.s. of (3.11) is of order O(n�1), which is o(1), as n!1.
Next we consider the second term of (3.10). By Fubini�s, the absolute

value of this term can be written as

�

2nhn

�����
1X

k=�1
E fX (Bhn(s+ k�̂n) \ [0; n])�X (Bhn(s+ k�) \ [0; n])g

����� :
(3.13)

Now note that the di¤erence within curly brackets of (3.13) does not
exceed

X (Bhn(s+ k�̂n)�Bhn(s+ k�) \ [0; n]) : (3.14)

We notice that

Bhn�jk(�̂n��)j(s+ k�) � Bhn(s+ k�̂n) � Bhn+jk(�̂n��)j(s+ k�): (3.15)

By (3.14) and (3.15) we have

jfX (Bhn(s+ k�̂n) \ [0; n])�X (Bhn(s+ k�) \ [0; n])gj
� 2X

�
Bhn+jk(�̂n��)j(s+ k�) nBhn�jk(�̂n��)j(s+ k�) \ [0; n]

�
:

(3.16)

By (3.16), the quantity in (3.13) does not exceed

�

nhn

1X
k=�1

EX
�
Bhn+jk(�̂n��)j(s+ k�) nBhn�jk(�̂n��)j(s+ k�) \ [0; n]

�
:

(3.17)

Since s 2 [0; n], by condition (2.1), we have with probability 1 that the
magnitude of any integer k such that fs+ k�̂n+ [�hn; hn]g\ [0; n] 6= ;
is at most of order O(n), as n!1. By (2.1), there exists large �xed
positive integer n0 and positive constant C, such that

nj�̂n � � j � C�nhn (3.18)
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with probability 1, for all n � n0. Then, for large n, the quantity in
(3.17) does not exceed

�

nhn

1X
k=�1

EX
�
B(1+C�n)hn(s+ k�) nB(1�C�n)hn(s+ k�) \ [0; n]

�
=

�

nhn

1X
k=�1

Z
B(1+C�n)hn (0)nB(1�C�n)hn (0)

�(x+ s+ k�)

I(x+ s+ k� 2 [0; n])dx

� �

hn

�
Nn + 1

n

�Z
B(1+C�n)hn (0)nB(1�C�n)hn (0)

�(x+ s)dx

� 2

hn

Z
B(1+C�n)hn (0)

j�(s+ x)� �(s)jdx

+
2�(s)

hn
jB(1+C�n)hn(0) nB(1�C�n)hn(0)j: (3.19)

To get the upper bound on the r.h.s. of (3.19), we use the fact that
�(x+ s+ k�) = �(x+ s) (by periodicity of �),

P1
k=�1 I(x+ s+ k� 2

[0; n]) � Nn + 1, and for large n, we also have that (Nn + 1)=n � 2
�
.

Since s is a Lebesgue point of �, the �rst term on the r.h.s. of (3.19)
is o(1), as n ! 1. While its second term does not exceed 8C�n�(s),
which is also o(1), as n ! 1. Then we have that the second term of
(3.10) is o(1), as n!1. This completes the proof of Theorem 2.1.

4. Proof of Theorem 2.2

First we write

V ar
�
�̂n(s)

�
= E

�
�̂n(s)

�2
�
�
E�̂n(s)

�2
: (4.1)

Since by Theorem 2.1, the second term on the r.h.s. of (4.1) is equal to
��2(s)+o(1) as n!1, to prove this theorem, it su¢ ces to show that
the �rst term on the r.h.s. of (4:1) is equal to �2(s) + o(1) as n!1.
The �rst term on the r.h.s. of (4.1) can be written as

1

n2h2n
E (�̂n � �)2

 1X
k=�1

X (Bhn(s+ k�̂n) \ [0; n])
!2

+
2�

n2h2n
E (�̂n � �)

 1X
k=�1

X (Bhn(s+ k�̂n) \ [0; n])
!2

+
�2

n2h2n
E

 1X
k=�1

X (Bhn(s+ k�̂n) \ [0; n])
!2
: (4.2)

We will show that the third term of (4.2) is equal to �2(s)+o(1), while
the other terms are o(1) as n!1.
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First we consider the �rst term of (4.2). By (3:12) and Cauchy-
Schwarz inequality, this term does not exceed�

n2h2n
��1 �

E(�̂n � �)4
� 1
2
�
EX4([0; n])

� 1
2 :

We know that (EX4([0; n]))
1
2 = O(n2) as n ! 1. By Lemma 3.2 for

m = 2 (we take �n = 1), we have that (E(�̂n � �)4)
1
2 = O(n�2h2n)

as n ! 1. Hence, the �rst term of (4:2) is of order O(n�2), which
is o(1) as n ! 1. Using a similar argument, by noting now that
(E(�̂n � �)2)

1
2 = O(n�1�nhn) as n ! 1, we have the second term

of (4.2) is of order o(n�1h�1n ), which (by assumption (2.3)) is o(1) as
n!1.
Next we consider the third term of (4.2). This term can be written

as

�2

n2h2n
E

 1X
k=�1

[X (Bhn(s+ k�̂n) \ [0; n])�X (Bhn(s+ k�) \ [0; n])]
!2

+
2�2

n2h2n
E

 1X
k=�1

[X (Bhn(s+ k�̂n) \ [0; n])�X (Bhn(s+ k�) \ [0; n])]

1X
l=�1

X (Bhn(s+ l�) \ [0; n])
!

+
�2

n2h2n
E

 1X
k=�1

X (Bhn(s+ k�) \ [0; n])
!2

(4.3)

We will show that the third term of (4.3) is equal to �2(s)+o(1), while
the other terms are o(1) as n!1.
First we consider the �rst term of (4.3). By (3.16) and (3.18), the

expectation appearing in this term does not exceed

E

 1X
k=�1

2X
�
B(1+C�n)hn(s+ k�) nB(1�C�n)hn(s+ k�) \ [0; n]

�!2
: (4.4)

By writing square of a sum as a double sum, we can interchange sum-
mations and expectation. Then we distinguish two cases, namely the
case where the indexes are the same and the case where the indexes are
di¤erent. For su¢ ciently large n, since hn # 0 and �n # 0 as n!1,

2X
�
B(1+C�n)hn(s+ k�) nB(1�C�n)hn(s+ k�) \ [0; n]

�
and

2X
�
B(1+C�n)hn(s+ j�) nB(1�C�n)hn(s+ j�) \ [0; n]

�
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are independent, provided k 6= j. Then, for large n, the expectation in
(4.4) does not exceed

4
1X

k=�1
EX2

�
B(1+C�n)hn(s+ k�) nB(1�C�n)hn(s+ k�) \ [0; n]

�
+4

 1X
k=�1

EX
�
B(1+C�n)hn(s+ k�) nB(1�C�n)hn(s+ k�) \ [0; n]

�!2

� 8
 1X
k=�1

EX
�
B(1+C�n)hn(s+ k�) nB(1�C�n)hn(s+ k�) \ [0; n]

�!2

� 8 (Nn + 1)2
 Z

B(1+C�n)hn (0)nB(1�C�n)hn (0)
�(x+ s)dx

!2
; (4.5)

by a similar argument as the one used in (3.19). Hence, to show that
the �rst term of (4.3) is o(1) as n!1, it su¢ ces now to check

�2
�
Nn + 1

n

�2 1

hn

Z
B(1+C�n)hn (0)nB(1�C�n)hn (0)

�(x+ s)dx

!2
= o(1); (4.6)

as n ! 1. But, by a similar argument as the one used in (3.19) and
the paragraph following it, it is clear that we have (4.6).
A similar argument, together with an application of Cauchy-Schwarz

inequality, shows that the second term of (4.3) is o(1) as n!1.
It remains to show that the third term of (4.3) is equal to �2(s)+o(1),

as n ! 1. To do this we argue as follows. By writing square of a
sum as double sums, we can interchange summations and expectation.
Recall that for large n, the intervals (Bhn(s+ k�) \ [0; n]) and
(Bhn(s + j�) \ [0; n]), for k 6= j, are disjoint. Then, the expectation
appearing in this term can be written as

1X
k=�1

1X
j=�1

EX (Bhn(s+ k�) \ [0; n])X (Bhn(s+ j�) \ [0; n])

=
1X

k=�1
EX2 (Bhn(s+ k�) \ [0; n])

+
1X
k 6=j

1X
(EX (Bhn(s+ k�) \ [0; n])) (EX (Bhn(s+ j�) \ [0; n]))

=
1X

k=�1
EX (Bhn(s+ k�) \ [0; n])

+

 1X
k=�1

EX (Bhn(s+ k�) \ [0; n])
!2
;

(4.7)
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because X is Poisson so that EX2(:) = EX(:) + (EX(:))2. By (4.7),
the quantity in the third term of (4.3) can be written as�

�

2nhn

� 
E
�

n

1X
k=�1

1

2hn
X (Bhn(s+ k�) \ [0; n])

!

+

 
E
�

n

1X
k=�1

1

2hn
X (Bhn(s+ k�) \ [0; n])

!2
: (4.8)

By Lemma 3.1 and assumption (2.3), we have that the �rst term of
(4.8) is o(1), as n ! 1. Lemma 3.1 also shows that the second term
of (4.8) is equal to �2(s) + o(1), as n ! 1. This completes the proof
Theorem 2.2.
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