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Abstract. Strong convergence of a uniform kernel estimator for
intensity of a periodic Poisson process with unknowm period is
presented and proved. The result presented here is a special case
of the one in [3]. The aim of this paper is to present an alternative
and a relatively simpler proof of strong convergence compared to
the one in [3]. This is a joint work with R. Helmers and R. Zitikis.
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1. Introduction and main result

In this paper, strong convergence of a uniform kernel estimator for
intensity of a periodic Poisson process with unknowm period is pre-
sented and proved. For more general results which using general kernel
function can be found in [3] and chapter 3 of [4].
Let X be a Poisson process on [0;1) with (unknown) locally inte-

grable intensity function �. We assume that � is a periodic function
with unknown period � . We do not assume any parametric form of �,
except that it is periodic. That is, for each point s 2 [0;1) and all
k 2 Z, with Z denotes the set of integers, we have

�(s+ k�) = �(s): (1.1)

Suppose that, for some ! 2 
, a single realization X(!) of the Pois-
son process X de�ned on a probability space (
;F ;P) with intensity
function � is observed, though only within a bounded interval [0; n].
Our goal is: (a) To present a uniform kernel estimator for � at a given
point s 2 [0; n] using only a single realization X(!) of the Poisson
process X observed in interval [0; n]. (The requirement s 2 [0; n] can
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be dropped if we know the period � .) (b) To determine an alternative
set of conditions for having strong convergence of this estimator com-
pared to the one in [3]. (c) To present an alternative and a relatively
simpler proof of strong convergence of the estimator compared to the
one in [3].
Note that, since � is a periodic function with period � , the problem

of estimating � at a given point s 2 [0; n] can be reduced into a problem
of estimating � at a given point s 2 [0; �). Hence, for the rest of this
paper, we assume that s 2 [0; �).
We will assume throughout that s is a Lebesgue point of �, that is

we have

lim
h#0

1

2h

Z h

�h
j�(s+ x)� �(s)jdx = 0

(e.g. [7], p.107-108). This assumption is a mild one since the set of
all Lebesgue points of � is dense in R, whenever � is assumed to be
locally integrable.
Let �̂n be any consistent estimator of the period � , that is,

�̂n
p! � ;

as n ! 1. For example, one may use the estimators constructed in
[2] or perhaps the estimator investigated by [6] or [1]. Let also hn be a
sequence of positive real numbers converging to 0, that is,

hn # 0 (1.2)

as n ! 1. With these notations, we may de�ne an estimator of �(s)
as

�̂n(s) :=
�̂n
n

1X
k=�1

1

2hn
X ([s+ k�̂n � hn; s+ k�̂n � hn] \ [0; n]) : (1.3)

The idea behind the construction of the estimator �̂n(s) given in (1.3)
can be found e.g. in [5].
The main result of this paper is the following theorem.

Theorem 1.1. Let the intensity function � be periodic and locally in-
tegrable. Furthermore, let the bandwidth hn be such that (1.2) holds
true, and

1

nhn
= O(n��) (1.4)

and

nj�̂n � � j=hn = O(n��) (1.5)
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with probability 1, as n!1, for an arbitrarily small � > 0 and � > 0,
then

�̂n(s)
a:s:! �(s) (1.6)

as n ! 1, provided s is a Lebesgue point of �. In other words, �̂n(s)
converges strongly to �(s) as n!1.

2. Proofs of Theorem 1.1

Throughout this paper, for any random variables Yn and Y on a pro-
bability space (
;A;P), we write Yn

c! Y to denote that Yn converges
completely to Y , as n ! 1. We say that Yn converges completely to
Y if

1X
n=1

P(jYn � Y j > �) <1;

for every � > 0.
Let Bh(x) denotes the interval [x� h; x+ h]. To establish Theorem

1.1, �rst we prove

1

Nn

1X
k=�1

1

2hn
X (Bhn(s+ k�̂n) \ [0; n])

a:s:! �(s); (2.1)

as n ! 1, where Nn = #fk : s + k� 2 [0; n]g. To prove (2.1), by
Borel-Cantelli, it su¢ ces to check, for each � > 0, that
1X
n=1

P

 ����� 1Nn
1X

k=�1

1

2hn
X (Bhn(s+ k�̂n) \ [0; n])� �(s)

����� > �
!
<1;

(2.2)

i.e. the di¤erence between the quantity on the l.h.s. of (2.1) and �(s)
converges completely to zero, as n ! 1. By Lemma 2.1, Lemma 2.2,
and Lemma 2.3, we obtain (2.2), which implies (2:1).
Then, to prove (1.6), it remains to check that �̂n(s) can be replaced

by the quantity on the l.h.s. of (2:1), i.e. we must show that the dif-
ference between �̂n(s) and the quantity on the l.h.s. of (2:1) converges
almost surely to zero, as n ! 1. To show this, �rst we write this
di¤erence as�

�̂nNn
n

� 1
�
1

Nn

1X
k=�1

1

2hn
X (Bhn(s+ k�̂n) \ [0; n]) ; (2.3)

that is, the quantity on the l.h.s. of (2:1) multiplied by (�̂nNnn�1 � 1).
Since �(s) is �nite, by (2:1), we have that the quantity on the l.h.s.
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of (2:1) is O(1), with probability 1, as n ! 1. Hence, it remains to
check that ���� �̂nNnn � 1

���� = o(1); (2.4)

with probability 1, as n!1. By the triangle inequality, the quantity
on the l.h.s. of (2:4) does not exceed���� �̂nNnn � �̂n

�

����+ ���� �̂n� � 1
���� � �̂n

n

���Nn � n
�

���+ 1
�
j�̂n � � j : (2.5)

Note that jn=��Nnj � 1, and �̂n = O(1), with probability 1, as n!1
(by (1.5)). Hence, the �rst term on the r.h.s. of (2:5) is O(n�1), with
probability 1, as n ! 1. By (1.5), we have that its second term is
o(1), with probability 1, as n ! 1. Therefore we have (2:4). This
completes the proof of Theorem 1.1.

In the following lemma we shall show that we may replace the random
centre s+ k�̂n of the interval Bhn(s+ k�̂n) in (2:1) by its deterministic
limit s+ k� .

Lemma 2.1. Suppose � is periodic (with period �) and locally inte-
grable. If, in addition, (1.2) and (1.5) are satis�ed, then

1

Nn

1X
k=�1

1

2hn
jfX (Bhn(s+ k�̂n) \ [0; n])�X (Bhn(s+ k�) \ [0; n])gj

c! 0; (2.6)

as n!1, provided s is a Lebesgue point of �.

Proof: First note that the di¤erence within curly brackets on the l.h.s.
of (2:6) does not exceed

X (Bhn(s+ k�̂n)�Bhn(s+ k�) \ [0; n]) : (2.7)

Now we notice that

Bhn�jk(�̂n��)j(s+ k�) � Bhn(s+ k�̂n) � Bhn+jk(�̂n��)j(s+ k�): (2.8)

By (2.7) and (2.8) we have

jfX (Bhn(s+ k�̂n) \ [0; n])�X (Bhn(s+ k�) \ [0; n])gj
� 2X

�
Bhn+jk(�̂n��)j(s+ k�) nBhn�jk(�̂n��)j(s+ k�) \ [0; n]

�
:

(2.9)
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Hence, to prove (2.6), it su¢ ces to show that

1

Nn

1X
k=�1

1

hn
X
�
Bhn+jk(�̂n��)j(s+ k�) nBhn�jk(�̂n��)j(s+ k�) \ [0; n]

�
c! 0; (2.10)

as n ! 1. To prove (2.10) we argue as follows. Let �n denotes the
l.h.s. of (2.10), and let also � > 0 be any �xed real number. Then to
verify (2.10) it su¢ ces to check, for each � > 0,

1X
n=1

P (j�nj > �) <1: (2.11)

By the assumption (1.5), there exists large �xed positive integer n0 and
posistive constant C such that nj�̂n� � j � Cn��hn with probability 1,
for all n � n0. Then, for all n � n0, we have with probability 1 that
P(j�nj > �) � P(j���nj > �), where ���n is given by

���n =
1

Nn

1X
k=�1

1

2hn

X
�
Bhn(1+Cn��)(s+ k�) nBhn(1�Cn��)(s+ k�) \ [0; n]

�
:

(2.12)

(Note that ���n is precisely equal to ��n in (2.10), provided we replace,
for our present purposes, � by Cn��). Since to show convergency of an
in�nite series it su¢ ces to check convergency of its tail, to prove (2:11),
it su¢ ces to check, for each � > 0, that

1X
n=n0

P
�
j���nj > �

�
<1: (2.13)

By Markov inequality for the M -th moment, we then obtain

P
�
j���nj > �

�
� E(���n)

M

�M
=

�
1

2�Nnhn

�M
E

 1X
k=�1

X
�
Bhn(1+Cn��)(s+ k�) nBhn(1�Cn��)(s+ k�) \Wn

�!M
:

(2.14)

Now consider the expectation on the r.h.s. of (2:14). By writing theM -
th power of a sum as aM -multiple sum, we can interchange summations
and expectation. Note that for large n, by (1.2), the random variables

X
�
Bhn(1+Cn��)(s+ k�) nBhn(1�Cn��)(s+ k�)

�
and
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X
�
Bhn(1+Cn��)(s+ j�) nBhn(1�Cn��)(s+ j�)

�
for k 6= j, are independent. Now, we distinguish M di¤erent cases in
theM -multiple sum, namely, case (1) if all indexes are the same, up to
case (M) if all indexes are di¤erent. Then we split up the M -multiple
sum into M di¤erent terms, where each term corresponds to each of
the M cases. Because for each k 2 ZZ and for any �xed M , by (1.2), it
is easy to check that

E
�
X
�
Bhn(1+Cn��)(s+ k�) nBhn(1�Cn��)(s+ k�)

��M
= O(1); (2.15)

as n ! 1, uniformly in k, we �nd that for large n, the biggest term
among those M terms, is the term corresponds to the case where all
indexes are di¤erent. Hence we conclude that the expectation on the
r.h.s. of (2:14) does not exceed

M

 1X
k=�1

EX
�
Bhn(1+Cn��)(s+ k�) nBhn(1�Cn��)(s+ k�) \Wn

�!M

=M

 Z
B
(1+Cn��)hn (0)nB(1�Cn��)hn (0)

�(s+ x)

1X
k=�1

I(s+ k� + x 2Wn)dx

!M

�M (Nn + 1)
M

 Z
B
(1+Cn��)hn (0)nB(1�Cn��)hn (0)

�(s+ x)dx

!M
:

(2.16)

The integral on the r.h.s. of (2:16) does not exceedZ
B
(1+Cn��)hn (0)nB(1�Cn��)hn (0)

j�(s+ x)� �(s)jdx

+
��B(1+Cn��)hn(0) nB(1�Cn��)hn(0)���(s): (2.17)

Since s is a Lebesgue point of �, we have that the quantity in the �rst
term of (2:17) is of order o(n��hn), as n ! 1. Since �(s) is �nite
and

��B(1+Cn��)hn(0) nB(1�Cn��)hn(0)�� = 4Cn��hn, we have that the
quantity in the second term of (2:17) is of order O(n��hn), as n!1.
Hence, the r.h.s. of (2:16) is of order O

�
nM(1��)hMn

�
, which implies

that the r.h.s. of (2:14) is of order O
�
n�M�

�
, as n ! 1. By choos-

ing M > 1
�
, we see that (2:13) is proved. This completes the proof of

Lemma 2.1.

To complete our proof of Theorem 1.1 we also need the following
lemma.
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Lemma 2.2. Suppose � is periodic (with period �) and locally inte-
grable. If, in addition, (1.2) and (1.4) are satis�ed, then

1

Nn

1X
k=�1

1

2hn
jX (Bhn(s+ k�) \ [0; n])�EX (Bhn(s+ k�) \ [0; n])j

c! 0; (2.18)

as n!1, provided s is a Lebesgue point of �.

Proof: First we write the l.h.s. of (2:18) as

1

2Nnhn

�����
1X

k=�1

~X (Bhn(s+ k�) \Wn)

����� ; (2.19)

where we write ~X to denote X � EX. By Markov inequality for the
2M -th moment, for each � > 0, we then obtain

P

 
1

2Nnhn

�����
1X

k=�1

~X (Bhn(s+ k�) \Wn)

����� > �
!

�
�

1

2�Nnhn

�2M
E

 1X
k=�1

~X (Bhn(s+ k�) \Wn)

!2M
:(2.20)

Now consider the expectation on the r.h.s. of (2:20). By writing the
2M -th power of a sum as a 2M -multiple sum, we can interchange sum-
mations and expectation. For large n, the r.v. X (Bhn(s+ k�) \Wn)

and X (Bhn(s+ j�) \Wn), for k 6= j, are independent. Here we also
distinguish 2M di¤erent cases in the 2M -multiple sum, namely, case
(1) if all indexes are the same, up to case (2M) if all indexes are dif-
ferent. Then we also split up the 2M -multiple sum into 2M di¤erent
terms, where each term corresponds to each of the 2M cases. Because
for any �xed M , it is easy to check that E ~X (Bhn(s+ k�) \Wn) = 0

and E
�
~X (Bhn(s+ k�) \Wn)

�2M
= O(1) as n ! 1, uniformly in k,

we �nd for large n, the biggest term among those 2M terms, is the one
corresponds to the case where there are M pairs of the same indexes.
Hence we conclude that the expectation on the r.h.s. of (2:20) does not
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exceed

2M

 1X
k=�1

E
�
~X (Bhn(s+ k�) \Wn)

�2!M

=M2M+1hMn

 1X
k=�1

1

2hn

Z
Bhn (0)

�(s+ x)I (s+ k� + x 2Wn) dx

!M

�M2M+1hMn (Nn + 1)
M

 
1

2hn

Z
Bhn (0)

�(s+ x)dx

!M
= O(nMhMn ); (2.21)

as n ! 1. Combining this result with the assumption (1.4), we then
obtain that the r.h.s. of (2:20) is of order O

�
n�Mh�Mn

�
= O

�
n�M�

�
,

as n ! 1. By choosing M > 1
�
, we have that the probabilities on

the l.h.s. of (2:20) are summable, which implies this lemma. This
completes the proof of Lemma 2.2.

It remains to evaluate a non-random sum.

Lemma 2.3. Suppose � is periodic (with period �) and locally inte-
grable. If, in addition, (1.2) is satis�ed, then

1

Nn

1X
k=�1

1

2hn
EX (Bhn(s+ k�) \ [0; n]) = �(s) + o(1); (2.22)

as n!1, provided s is a Lebesgue point of �.

Proof: Using the fact that X is Poisson, the l.h.s. of (2:22) can be
written as

1

Nn

1X
k=�1

1

2hn

Z hn

�hn
�(s+ k� + x)I(s+ k� + x 2 [0; n])dx

=
1

2Nnhn

Z hn

�hn
�(s+ x)

1X
k=�1

I(s+ k� + x 2 [0; n])dx: (2.23)

Now note that

(Nn � 1) �
1X

k=�1

I(s+ k� + x 2 [0; n]) � (Nn + 1);

which implies N�1
n

P1
k=�1 I(s + k� + x 2 [0; n]) can be written as

(1 + O(n�1)), as n ! 1, uniformly in x. Then, the quantity on the
r.h.s. of (2:23) can be written as�

1 +O
�
1

n

��
1

2hn

Z hn

�hn
�(s+ x)dx: (2.24)
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By (1.2) together with the assumption that s is a Lebesgue point of �,
we have that

(2hn)
�1
Z hn

�hn
�(s+ x)dx = �(s) + o(1);

as n ! 1. Then we obtain this lemma. This completes the proof of
Lemma 2.3.

Lemma 2.4. Suppose that the assumption (1.5) is satis�ed. Then, for
each positive integer M , we have that

E (�̂n � �)2M = O
�
n�2M(1+�)h2Mn

�
; (2.25)

as n!1.

Proof: By the assumption (1.5), there exists large positive constant
C and positive integer n0 such that

j�̂n � � j � Cn�(1+�)hn; (2.26)

with probability 1, for all n � n0. Then, the l.h.s. of (2:25) can be
written as Z 1

0

x2MdP (j�̂n � � j � x)

= �
Z Cn�(1+�)hn

0

x2MdP (j�̂n � � j > x) : (2.27)

By partial integration, the r.h.s. of (2:27) is equal to

�x2MP (j�̂n � � j > x) jCn
�(1+�)hn

0

+2M

Z Cn�(1+�)hn

0

P (j�̂n � � j > x)x2M�1dx: (2.28)

The �rst term of (2:28) is equals to zero, while its second term is at
most equal to

2M

Z Cn�(1+�)hn

0

x2M�1dx = C2Mn�2M(1+�)h2Mn

= O
�
n�2M(1+�)h2Mn

�
; (2.29)

as n!1. This completes the proof of Lemma 2.4.
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