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Abstract. We construct and investigate a consistent kernel-type
nonparametric estimator of the global intensity of a cyclic Poisson
process in the presence of linear trend. It is assumed that only a
single realization of the Poisson process is observed in a bounded
window. We prove that the proposed estimator is consistent when
the size of the window indefinitely expands. The asymptotic bias
and variance of the proposed estimator are computed. Bias reduc-
tion of the estimator is also proposed.
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1. Introduction

Let X be a Poisson point process on [0,∞) with absolutely conti-
nuous σ-finite mean measure µ w.r.t. Lebesgue measure ν and with
(unknown) locally integrable intensity function λ, i.e., for any bounded
Borel set B we have

µ(B) = EN(B) =

∫

B

λ(s)ds < ∞.

Furthermore, λ is assumed to consist of two components, namely a
periodic or cyclic component with period τ > 0 and a (unknown) linear
trend component. In other words, for any point s ∈ [0,∞), we can write
the intensity function λ as

λ(s) = λc(s) + as (1.1)

where λc(s) is a periodic function with period τ and a denotes the
slope of the linear trend. In the present paper, we do not assume any
(parametric) form of λc except that it is periodic. That is we assume
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that the equality

λc(s + kτ) = λc(s) (1.2)

holds for all s ∈ [0,∞) and k ∈ Z. Here we consider a Poisson point
process on [0,∞) instead of, for instance, on R because λ has to satisfy
(1.1) and must be non negative. For the same reason we also restrict
our attention to the case a > 0.

Furthermore, let W1, W2, . . . be a sequence of intervals [0, |Wn|],
n = 1, 2, . . . , such that the size or the Lebesgue measure ν(Wn) = |Wn|
of Wn is finite for each fixed n ∈ N, but

|Wn| → ∞, (1.3)

as n → ∞.
Suppose now that, for some ω ∈ Ω, a single realization X(ω) of the

Poisson process X defined on a probability space (Ω,F ,P) with inten-
sity function λ (cf. (1.1)) is observed, though only within a bounded
interval, called ’window’ W ⊂ [0,∞). Our goal in this paper is to
construct a consistent non-parametric estimator of the global intensity

θ =
1

τ
µ([0, τ ]) =

1

τ

∫ τ

0

λc(s)ds (1.4)

of the cyclic component λc of λ in (1.1), using only a single realization
X(ω) of the Poisson process X observed in W := Wn. We also com-
pute the asymptotic bias and variance of the proposed estimator. The
present paper aims at extending previous work for the purely cyclic
case, i.e. a = 0, (cf. [2]) to the more general model (1.1).

Parallel to this paper, Helmers and Mangku [3] consider the problem
of estimating the cyclic component λc at a given point s ∈ [0, τ) of the
intensity given in (1.1) of a cyclic Poisson process in the presence of

linear trend. In fact, the estimator θ̂n,b given in (3.2) is used in [3] for
correcting the bias of the estimator of λc. Estimation of the intensity
function λc at a given point s ∈ [0, τ) of a purely cyclic Poisson process,
that is Poisson proces having intensity given in (1.1) with a = 0, has
been investigated, among others, in [4], [5], [6], [8], and [9].

There are many practical situations where we have to use only a
single realization for estimating intensity of a cyclic Poisson process. A
review of such applications can be seen in [4], and a number of them
can also be found in [1], [7], [9], [11] and [12].

In section 2 we present the estimators and some preliminary results.
These results are evaluated in section 3, by a Monte Carlo simulation.
This evaluation leads to a bias corrected estimator. Proofs of all theo-
rems are given in section 4.

2. The estimators and preliminary results

In this paper, we focus to the case when the period τ is known, but
the slope a and the function λc on [0, τ) are both unknown. Note also
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that, in many practical applications, we know the period, for instance:
one day, one week, one month, one year, etc. In this situation we may
define estimators of respectively a and θ as follows

ân :=
2X(Wn)

|Wn|2
, (2.1)

and

θ̂n :=
1

ln( |Wn|
τ

)

∞
∑

k=1

1

k

X([kτ, (k + 1)τ ] ∩ Wn)

τ
− ân

(

τ

2
+

|Wn|

ln( |Wn|
τ

)

)

.(2.2)

To obtain the estimator ân of a it suffices to note that

EX(Wn) =
a

2
|Wn|

2 + O(|Wn|),

as n → ∞, which directly yields the estimator given in (2.1). Note
also that if X were a Poisson process with intensity λ(s) = as, then ân

would be the maximum likelihood estimator of a (cf. [10]).
Next, we describe the idea behind the construction of the estimator

θ̂n of θ. For any k ∈ N, we can write

θ =
1

τ

∫ (k+1)τ

kτ

λc(s)ds. (2.3)

Let Ln :=
∑∞

k=1 k−1
I(kτ ∈ Wn). Then, by (2.3), we can write

θ =
1

Ln

∞
∑

k=1

1

k

1

τ

∫ (k+1)τ

kτ

λc(s)I(s ∈ Wn)ds

=
1

Ln

∞
∑

k=1

1

kτ

∫ (k+1)τ

kτ

(λ(s) − as)I(s ∈ Wn)ds

=
1

Ln

∞
∑

k=1

1

kτ

∫ (k+1)τ

kτ

λ(s)I(s ∈ Wn)ds

−
a

Ln

∞
∑

k=1

1

kτ

∫ τ

0

(s + kτ)I(s + kτ ∈ Wn)ds

=
1

Ln

∞
∑

k=1

1

k

EX([kτ, (k + 1)τ ] ∩ Wn)

τ

−
a

Lnτ

∫ τ

0

s

∞
∑

k=1

1

k
I(s + kτ ∈ Wn)ds

−
a

Ln

∫ τ

0

∞
∑

k=1

I(s + kτ ∈ Wn)ds. (2.4)

By noting that
∑∞

k=1 k−1
I(s + kτ ∈ Wn) = Ln + O(1) ≈ Ln and

∫ τ

0
s ds = τ 2/2, we see that the second term on the r.h.s. of (2.4) is
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≈ aτ/2. We also will use the fact that

a

Ln

∫ τ

0

∞
∑

k=1

I(s + kτ ∈ Wn)ds =
aτ

Ln

(

|Wn|

τ
+ ζn

)

=
a|Wn|

Ln

+
aτζn

Ln

≈
a|Wn|

Ln

(cf. definition of ζn in line below (2.10)), where |ζn| ≤ 1 for all n ≥ 1.
By these approximations and by approximating the expectation in the
first term on the r.h.s. of (2.4) with its stochastic counterpart, we
obtain

θ ≈
1

Ln

∞
∑

k=1

1

k

EX([kτ, (k + 1)τ ] ∩ Wn)

τ
− a

(

τ

2
+

|Wn|

Ln

)

. (2.5)

From the ≈ in (2.5) and noting that Ln ∼ ln(|Wn|/τ) as n → ∞, we
see that

θ̄n =
1

ln( |Wn|
τ

)

∞
∑

k=1

1

k

EX([kτ, (k + 1)τ ] ∩ Wn)

τ
− a

(

τ

2
+

|Wn|

ln( |Wn|
τ

)

)

,(2.6)

can be viewed as an estimator of θ, provided both the period τ and the
slope a of the linear trend are assumed to be known. If a is unknown,
we replace a by ân (cf. (2.1)) and one obtains the estimator of θ given
in (2.2).

In Helmers and Mangku [3] has been proved the following lemma.

Lemma 2.1. Suppose that the intensity function λ satisfies (1.1) and
is locally integrable. Then we have

E (ân) = a +
2θ

|Wn|
+ O

(

1

|Wn|2

)

(2.7)

and

V ar (ân) =
2a

|Wn|2
+ O

(

1

|Wn|3

)

(2.8)

as n → ∞. Hence, by (1.3), ân is a consistent estimator of a; its
mean-squared error (MSE) is given by MSE(ân) = (4θ2 +2a)|Wn|

−2 +
O(|Wn|

−3) as n → ∞.

Consistency of θ̂n is established in Theorem 2.2. In Theorem 2.3 we
compute the asymptotic approximations to respectively the bias and
variance of the estimator θ̂n.

Theorem 2.2. Suppose that the intensity function λ satisfies (1.1)
and is locally integrable. Then we have

θ̂n

p
→ θ, (2.9)
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as n → ∞. In other words, θ̂n is a consistent estimator of θ. In
addition, the MSE of θ̂n converges to 0, as n → ∞.

Theorem 2.3. Suppose that the intensity function λ satisfies (1.1)
and is locally integrable. Then we have

Eθ̂n = θ −
(2 − γ)θ − (γ/2 + ζn)aτ

ln(|Wn|/τ)
+ o

(

1

ln |Wn|

)

(2.10)

as n → ∞, where where γ = 0.577.. is Euler’s constant and ζn =
(τ)−1

∫ τ

0

∑∞
k=1 I(x+kτ ∈ Wn)dx− (|Wn|/τ) and |ζn| ≤ 1 for all n ≥ 1.

In addition, we also have

V ar
(

θ̂n

)

=
a

ln(|Wn|/τ)
+

(θ/τ + a/2)(π2/6) − a(2 − γ)

(ln(|Wn|/τ))2

+o

(

1

(ln |Wn|)2

)

(2.11)

as n → ∞.

3. Simulations and bias reduction

For the simulations, we consider the intensity function

λ(s) = λc(s) + as = A exp

{

ρ cos

(

2πs

τ
+ φ

)}

+ as,

that is (1.1), where λc is the intensity function discussed in Vere-Jones
[14]. We chose ρ = 1, τ = 5, φ = 0 and a = 0.05. With this choice of
the parameters, we have

λ(s) = A exp

{

cos

(

2πs

τ

)}

+ 0.05s. (3.1)

In our simulations we consider three values of θ, which is determined by
the choice of A, namely (i) a small value of θ, i.e. θ = 1.2661 (A = 1),
(ii) a moderate value of θ, i.e. θ = 2.5322 (A = 2) and (iii) a large value
of θ, i.e. θ = 5.0644 (A = 4) (cf. Remark 3.4). We use Wn = [0, 1000].

Example 3.1. In this example we study the performance of the estima-
tor θ̂n in (2.2), in the case that the intensity function λ(s) is given by
(3.1).

(i) For the case small value of θ, (θ = 1.2661), by (2.10) and (2.11), we
obtain the asymptotic approximations to respectively the bias and
the variance of θ̂n as follows: Bias(θ̂n) = −0.3736 and V ar(θ̂n) =
0.0232. From the simulation, using M = 104 independent re-
alizations of the process X observed in the Wn = [0, 1000], we

obtain respectively B̂ias(θ̂n) = −0.3793 and V̂ ar(λ̂n) = 0.0221,

where B̂ias(θ̂n) is the sample mean minus the true value θ and

V̂ ar(θ̂n) is the sample variance. Summarizing, we have Bias(θ̂n)−
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B̂ias(θ̂n) = −0.3736−(−0.3793) = 0.0057 and V ar(θ̂n)−V̂ ar(λ̂n) =
0.0232 − 0.0221 = 0.0011.

(ii) For θ = 2.5322, by (2.10) and (2.11), and from the simulation

(M = 104) we obtain respectively Bias(θ̂n)−B̂ias(θ̂n) = −0.7137−
(−0.7303) = 0.0166 and

V ar(θ̂n) − V̂ ar(λ̂n) = 0.0381 − 0.0364 = 0.0017.
(iii) For θ = 5.0644, by (2.10) and (2.11), and from the simulation

(M = 104) we obtain respectively Bias(θ̂n)−B̂ias(θ̂n) = −1.3938−
(−1.4210) = 0.0272 and

V ar(θ̂n) − V̂ ar(λ̂n) = 0.0677 − 0.0634 = 0.0043.

From Example 3.1, we see that the asymptotic approximations to
the bias and variance given in (2.10) and (2.11) predict quite well the

variance and bias of the estimator θ̂n in finite samples. However, we
see that the bias of θ̂n is quite big. We can reduce this bias by adding
an estimator of the second term on the r.h.s. of (2.10) into θ̂n. By
employing this idea, we obtain a bias corrected estimator of θ as follows

θ̂n,b := θ̂n +
(2 − γ)θ̂n − (γ/2 + ζn)τ ân

ln(|Wn|/τ)
. (3.2)

Theorem 3.2. Suppose that the intensity function λ satisfies (1.1)
and is locally integrable. Then we have

Eθ̂n,b = θ + o

(

1

ln |Wn|

)

, (3.3)

as n → ∞, and

V ar
(

θ̂n,b

)

=
a

ln(|Wn|/τ)
+

(θ/τ + a/2)(π2/6) + a(2 − γ)

(ln(|Wn|/τ))2

+o

(

1

(ln |Wn|)2

)

, (3.4)

as n → ∞.

Example 3.3. In this example we study the performance of the estima-
tor θ̂n,b in (3.2), in the case that the intensity function λ(s) is given by
(3.1).

(i) For θ = 1.2661, from the simulation (M = 104) and by (3.4),

we obtain respectively B̂ias(θ̂n,b) = −0.1090 and V ar(θ̂n,b) −

V̂ ar(θ̂n,b) = 0.0283 − 0.0354| = −0.0071.
(ii) For θ = 2.5322, from the simulation (M = 104) and by (3.4),

we obtain respectively B̂ias(θ̂n,b) = −0.2056 and V ar(θ̂n,b) −

V̂ ar(θ̂n,b) = 0.0431 − 0.0578 = −0.0147.
(iii) For θ = 5.0644, from the simulation (M = 104) and by (3.4),

we obtain respectively B̂ias(θ̂n,b) = −0.3993 and V ar(θ̂n,b) −

V̂ ar(θ̂n,b) = 0.0728 − 0.1051 = −0.0323.
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It is clear that the bias of the estimator θ̂n,b is much smaller than

the bias of the original estimator θ̂n. So the bias reduction proposed in
(3.2) works.

Remark 3.4. A cautionary remark on the range of validity of Theorems
2.3 and 3.2 in practical applications is important here. The remainder
terms in (2.10), (2.11), (3.3) and (3.4) will depend on the values of
the parameters involved, such as θ, a, and τ . In order to have the
approximations in (2.10) and (3.3) to be valid, θ and aτ should not
too big compared to ln(|Wn|/τ). The second order approximations in
(2.11) and (3.4) is valid provided θ and aτ are not too big compared
to (ln(|Wn|/τ))2. Note that, in case (iii) of Examples 3.1 and 3.3 we
have θ = 5.0644 which is almost the same as the value of ln(|Wn|/τ) =
5.2983. For this reason, we do not consider the case where the value of
θ is larger than that in case (iii) of the current examples.

To conclude this section, we remark that the bias corrected estimator
θ̂n,b is to be preferred in practical applications.

4. Proofs

We first prove Theorem 2.3.

Proof of Theorem 2.3

First we prove (2.10). Note that

Eθ̂n =
1

ln(|Wn|/τ)

∞
∑

k=1

1

k

EX([kτ, (k + 1)τ ] ∩ Wn)

τ

−

(

τ

2
+

|Wn|

ln(|Wn|/τ)

)

Eân. (4.1)

The first term on the r.h.s. of (4.1) is equal to

1

ln(|Wn|/τ)

∞
∑

k=1

1

kτ

∫ kτ+τ

kτ

λ(x)I(x ∈ Wn)dx

=
1

ln(|Wn|/τ)

∞
∑

k=1

1

kτ

∫ τ

0
(λc(x + kτ) + a(x + kτ)) I(x + kτ ∈ Wn)dx

=
1

ln(|Wn|/τ)

1

τ

∫ τ

0
λc(x)

∞
∑

k=1

1

k
I(x + kτ ∈ Wn)dx

+
a

ln(|Wn|/τ)

1

τ

∫ τ

0
x

∞
∑

k=1

1

k
I(x + kτ ∈ Wn)dx

+
a

ln(|Wn|/τ)

1

τ

∫ τ

0

∞
∑

k=1

I(x + kτ ∈ Wn)dx, (4.2)
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where we have used (1.1) and (1.2). Note that

∞
∑

k=1

k−1
I(x + kτ ∈ Wn) = ln(|Wn|/τ) + γ + o(1) (4.3)

as n → ∞ uniformly in x ∈ [0, τ ] (cf. [13], p.150). Using (4.3), a simple
calculation shows that the first term on the r.h.s. of (4.2) is equal to

θ +
θγ

ln(|Wn|/τ)
+ o

(

1

ln |Wn|

)

(4.4)

as n → ∞, and its second term is equal to

aτ

2
+

aτγ/2

ln(|Wn|/τ)
+ o

(

1

ln |Wn|

)

(4.5)

as n → ∞. Clearly

1

τ

∫ τ

0

∞
∑

k=1

I(x + kτ ∈ Wn)dx = |Wn|/τ + ζn (4.6)

(cf. definition of ζn in line below (2.10)). By (4.6), the third term on
the r.h.s. of (4.2) reduces to

a|Wn|

ln(|Wn|/τ)
+

aτζn

ln(|Wn|/τ)
. (4.7)

Using (2.7), the second term on the r.h.s. of (4.1) reduces to

−
aτ

2
−

a|Wn|

ln(|Wn|/τ)
−

2θ

ln(|Wn|/τ)
+ O

(

1

|Wn|

)

(4.8)

as n → ∞. Combining (4.4), (4.5), (4.7) and (4.8), we obtain (2.10).

Next we prove (2.11). Let An and −Bn denote respectively the
first and second term on the r.h.s. of (2.2). In other words, we write

θ̂n = An − Bn. Then we can compute the variance of θ̂n as follows

V ar
(

θ̂n

)

= V ar (An) + V ar (Bn) − 2Cov (An, Bn) . (4.9)

Note that, for any j 6= k, j, k = 1, 2, . . . , we have X([jτ, (j +1)τ ]∩Wn)
and X([kτ, (k + 1)τ ] ∩ Wn) are independent. Then V ar(An) can be
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computed as follows

V ar (An)

=
1

(ln(|Wn|/τ))2

∞
∑

k=1

1

k2τ2
V ar (X([kτ, (k + 1)τ ] ∩ Wn))

=
1

τ2(ln(|Wn|/τ))2

∞
∑

k=1

1

k2

∫ τ

0
(λc(x) + a(x + kτ)) I(x + kτ ∈ Wn)dx

=
1

τ2(ln(|Wn|/τ))2

∫ τ

0
λc(x)

∞
∑

k=1

1

k2
I(x + kτ ∈ Wn)dx

+
a

τ2(ln(|Wn|/τ))2

∫ τ

0
x

∞
∑

k=1

1

k2
I(x + kτ ∈ Wn)dx

+
a

τ(ln(|Wn|/τ))2

∫ τ

0

∞
∑

k=1

1

k
I(x + kτ ∈ Wn)dx. (4.10)

Here we have used (1.1) and (1.2). Note that

∞
∑

k=1

1

k2
I(x + kτ ∈ Wn) =

π2

6
+ o(1) (4.11)

as n → ∞, uniformly in x ∈ [0, τ ] (cf. [13], p.34). Using (4.11), a
simple calculation shows that the first term on the r.h.s. of (4.10) is
equal to

(θ/τ)(π2/6)

(ln(|Wn|/τ))2
+ o

(

1

(ln |Wn|)2

)

(4.12)

as n → ∞, and its second term is equal to

(a/2)(π2/6)

(ln(|Wn|/τ))2
+ o

(

1

(ln |Wn|)2

)

(4.13)

as n → ∞. By (4.3), the third term on the r.h.s. of (4.10) reduces to

a

ln(|Wn|/τ)
+

aγ

(ln(|Wn|/τ))2
+ o

(

1

(ln |Wn|)2

)

(4.14)

as n → ∞. Combining (4.12), (4.13) and (4.14), we obtain

V ar (An) =
a

ln(|Wn|/τ)
+

(θ/τ + a/2)π2/6 + aγ

(ln(|Wn|/τ))2
+ o

(

1

(ln |Wn|)2

)

(4.15)

as n → ∞.
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Next we consider the second and third term on the r.h.s. of (4.9).
By (2.8), we obtain

V ar(Bn) =

(

τ/2 +
|Wn|

ln(|Wn|/τ)

)2 (

2a

|Wn|2
+ O

(

1

|Wn|3

))

=
2a

(ln(|Wn|/τ))2
+ O

(

1

|Wn| ln(|Wn|/τ)

)

(4.16)

as n → ∞. Next we compute Cov(An, Bn) as follows

Cov(An, Bn)

=

(

|Wn|

ln( |Wn|
τ

)
+ τ/2

)(

2

|Wn|2 ln( |Wn|
τ

)

)

∞
∑

k=1

1

kτ
Cov (X([kτ, (k + 1)τ ] ∩ Wn), X(Wn))

=

(

2

τ |Wn|(ln( |Wn|
τ

))2
+

1

|Wn|2 ln( |Wn|
τ

)

)

∞
∑

k=1

1

k
V ar (X([kτ, (k + 1)τ ] ∩ Wn))

=

(

2

τ |Wn|(ln( |Wn|
τ

))2
+

1

|Wn|2 ln( |Wn|
τ

)

)

∫ τ

0
(λc(x) + ax)

∞
∑

k=1

1

k
I(x + kτ ∈ Wn)dx

+

(

2

τ |Wn|(ln( |Wn|
τ

))2
+

1

|Wn|2 ln( |Wn|
τ

)

)

aτ

∫ τ

0

∞
∑

k=1

I(x + kτ ∈ Wn)dx.

(4.17)

By (4.3), we see that the first term on the r.h.s. of (4.17) is of order
O(|Wn|

−1(ln |Wn|)
−1), as n → ∞. By (4.6), the second term on the

r.h.s. of (4.17) reduces to 2a(ln |Wn|)
−2 + O(|Wn|

−1(ln |Wn|)
−1), as

n → ∞. Hence, the third term on the r.h.s. of (4.9) is equal to

−2Cov(An, Bn) = −
4a

(ln(|Wn|/τ))2
+ O

(

1

|Wn| ln(|Wn|/τ)

)

(4.18)

as n → ∞. Combining (4.15), (4.16) and (4.18), we obtain (2.11). This
completes the proof of Theorem 2.3.

Proof of Theorem 2.2

By (2.10) and the assumption (1.3), we obtain

Eθ̂n = θ + o(1) (4.19)
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as n → ∞, while (2.11) and assumption (1.3) imply

V ar
(

θ̂n

)

= o(1) (4.20)

as n → ∞. Together (4.19) and (4.20), imply (2.9). This completes
the proof of Theorem 2.2.

Proof of Theorem 3.2

First we prove (3.3). To do this, we first rewrite the estimator θ̂n,b in
(3.2)

θ̂n,b :=

(

1 +
(2 − γ)

ln(|Wn|/τ)

)

θ̂n −
(γ/2 + ζn)τ

ln(|Wn|/τ)
ân. (4.21)

By (2.10), we see that the expectation of the first term on the r.h.s. of
(4.21) is equal to

θ +
(γ/2 + ζn)aτ

ln(|Wn|/τ)
+ o

(

1

ln |Wn|

)

(4.22)

as n → ∞. By (2.7), the expectation of the second term on the r.h.s.
of (4.21) reduces to

−
(γ/2 + ζn)τa

ln(|Wn|/τ)
+ o

(

1

ln |Wn|

)

(4.23)

as n → ∞. Combining (4.22) and (4.23) we obtain (3.3).

Next we prove (3.4). Using (4.21), V ar(θ̂n,b) can be computed as
follows

V ar(θ̂n,b) =

(

1 +
(2 − γ)

ln(|Wn|/τ)

)2

V ar(θ̂n) +
(γ/2 + ζn)2τ 2

(ln(|Wn|/τ))2
V ar(ân)

−2

(

1 +
(2 − γ)

ln(|Wn|/τ)

)

(γ/2 + ζn)τ

ln(|Wn|/τ)
Cov(θ̂n, ân). (4.24)

By (2.11), we see that the first term on the r.h.s. of (4.24) is equal to

a

ln(|Wn|/τ)
+

(θ/τ + a/2)(π2/6) − a(2 − γ)

(ln(|Wn|/τ))2
+

2a(2 − γ)

(ln(|Wn|/τ))2

+o

(

1

(ln |Wn|)2

)

=
a

ln(|Wn|/τ)
+

(θ/τ + a/2)(π2/6) + a(2 − γ)

(ln(|Wn|/τ))2
+ o

(

1

(ln |Wn|)2

)

(4.25)

as n → ∞. Note that, the −a(2− γ) on the r.h.s. of (2.11) is replaced
by +a(2 − γ) on the r.h.s. of (4.25). By (2.8), it easily seen that the
second term on the r.h.s. of (4.24) is of order O(|Wn|

−2(ln |Wn))−2),
which is o((ln |Wn))−2) as n → ∞. Finally, Cauchy-Schwarz inequality
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shows that the third term on the r.h.s. of (4.24) is of negligible order
o((ln |Wn))−2) as n → ∞. Hence, we have (3.4). This completes the
proof of Theorem 3.2.
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