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Abstract

We consider the problem of estimating the local intensity of a cyclic Pois-
son point process, when we know the period. We suppose that only a single
realization of the cyclic Poisson point process is observed within a bounded
'window', and our aim is to estimate consistently the local intensity at a given
point. A nearest neighbor estimator of the local intensity is proposed, and
we show that our estimator is weakly and strongly consistent, as the window
expands.
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1 Introduction

We consider a cyclic Poisson point process X in R with absolutely continuous o-finite
mean measure ~ w.r.t. Lebesgue measure "v, and with (unknown) locally integrable
intensity function ~ : R -t R+ U {OJ. In addition, ~ is assumed to be cyclic with
period T E R+ , i.e.

~(s + k-r] = ~(s) (1.1)

for all S E R+ and k E Z.
Let (D., A, P) be a probability space, and let us suppose that, for some wED.,

a single realization X(w) of the cyclic Poisson point process X is observed, though
only within a bounded interval, called 'window', W C R The aim of this paper is to
estimate consistently the intensity function ~ at a given point s using an estimator
based on nearest neighbor distances, from a single realization X(w) of the Poisson
process X observed in W = Wn, in such a way that·

(1.2)
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as n~ 00, where IWnl =-v(Wn) denotes the size (or the Lebesgue measure) of the
window Wn•

Let sr, i = 1, ... ,X(Wn, w), denote the locations of the points in the realization
X(w) of the Poisson process X, observed in window Wn• Here X(Wn, w) is nothing
but the cardinality of the data set [s.].

It is well-known (see, e.g. page 651 of [2]) that, conditionally given X(Wn) = m,
(SI,'" ,sm) can be viewed as a random sample of size m from a distribution with
density f, which is given by

(1.3)

while the simultaneous density f(SI,'" ,sm), of (SI,'" ,sm) is given by

Let Si, i = 1, ... ,m, denote the location of the point s, [i = 1, ,m), after
translation by a multiple of period -r such that 5i E B-r[s], for all i = 1, ,m, where
B-r(s) = [s-I' s+1-)' The translation can be described more precisely as follows. We
cover the window 'vVn by Nn.-r adjacent disjoint intervals B-r(s+j-r), for some integer
j, and let Nn.'t' denote the number of such intervals, provided B-r(s + j-r) nWn i= 0.
Then, for each j, we shift the interval B-r(s + j-r) (together with the data points of
X (w) contained in this interval) by the amount j-r such that after translation the
interval coincide with B-r(s).

By periodicity of A, we have that A(5i) = A(Si), for each i = 1, ... ,X(Wn, w).
For any A C B-r(s), let Xn (A) denotes the number of points Si in A. Then, of
course, Xn (B-r(s)) =X(Wn), where Xn is a Poisson process with intensity function

00

An(U)=A(U) .L I(u+j-rEWn)
;=-00

(cf. [5], Superposition Theorem and Restriction Theorem, pagl:)16-17). As a result,
(cf. (1.3) and (104», conditionally given Xn (B-r(s)) = rn, (SI , ••• ,5m) can be viewed
as a random sample of size m from a distribution with density f, which is given by

while the simultaneous density f(51 , ••• ,sm), of (51 , ... , sm) is given by

f-(- -) rr~IAn (5d 1«(- -) E' B ( )m) (1.6)SI""ISm =( )m SI, ... ,Sm .,.s ..
fw" A(v)dv
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For any real number x 2: 0, define

Hn (x) = P (ISi - s] ::; x IX(Wn) = m)

= P (s - X::; Si ::; S + x IX(Wn) = m)

f
S+X )-.. (u)

= J n)-..() I(u E B,.(slldu.
S-l( wn v dv

(1.7)

2 Main Results
Let k = kn be a sequence of positive integers such that

kn --; 00, (2.1)

and

kn

IWn110. (2.2)

as n --; 00.

Now we consider the order statistics of the random sample IS1 - s], '... ,15m - s]
of size m from Hn. Let Is( k) - s] denote the k-th order statistics of the sample
151- s].. .. ,Ism - s], given X(Wn) = m. A nearest neighbor estimator for )-..at the
point s, is given by

(2.3)

Remark: Note that An(s) is well-defined provided kn ::; X(Wn). Since

as IWnl--; 00, (because of (2.2) and the fact that X(Wn)/IWnl ~ e, with e > 0,
where e = -r-1 J~)-..(s)ds, the 'global intensity' of X), we can conclude no matter
how we define An(s) in case kn > X(Wn), Theorem 1 remains valid. To check that
the above conclusion also holds for Theorem 2, 'we need to show that

00L P(kn > X(Wn)) < 00

n=l

But, by (~.2), the exponential bound for Poisson 'probabilities (see Lemma 1 in
section 5), and (2.5), it is easy to show that P(kn > X(Wn)) is summable.

Theorem 1 Suppose that )-..is periodic with period -r and locally integrable. If, in
addition (2.1) and (2.2) hold, then

(2.4)

as n --; 00, for each s at which )-..is continuous and positive.
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Throughout the paper, for any random variables Yn and Y, we write Yn ~ Y to
denote that Yn converges completely to Y, as n -t 00.

Theorem 2 Suppose that 'A is periodic with period -r and locally integrable. If, in
addition

00

L exp(-€kn) < 00,

n=1

(2.5)

for each € > 0 and (2.2) holds, then

An (s ) ~ 'A ( s ), (2.6)

as n-t 00, for each s at which A is continuous and positive.

We remark that nearest neighbor estimators for estimating density functions,
was studied by [6], [12], [7], [8], and some others. The condition (2.5) also appears
in [12). In the construction of our nearest neighbor estimator (2.3) we employ the
periodicity of A (cf. (1.1)) to combine different pieces from our data set, in order to
mimic the 'infill asymptotic' framework.

Kernel type estimators for the intensity function A at a given point s , are pro-
posed and studied by [3] and [4]. [3] show that their estimator is l2-consistent,
provided 'A has a parametric form, while [4J consider a cyclic Poisson process and
prove that their estimator is weakly and strongly consistent, provided 5 is a Lebesgue
point of A.

3 Proof of Theorem 1

In view of Remark following 2.3, we may assume, without loss of generality, that
kn :S X(Wn). To prove (2.4), we must show that,

p (12IWnl~~,,) _ 51 - 'A(S)I ~ €) -t 0 (3.7)

as n -t 00, for each sufficiently small € > O. Choose € < 'A(5). Then, a simple
calculation shows that, the probability on the 1.h.s. of (3.7) is equal to

(
-rk., _ 'rkn > 1_ I)

p 2IWnJ('A(5) _ €).:S IS(k,,) - 51or 2IWnJ(A(s) + e ) _ S(k,,) - 5

(
'rkn)< P 15(k,,) - s] ~ 2IW

n
l('A(s) _ €)

(
'rkn)

+P 15(k,,) - s] :S 2IW
n
J('A(s) + €) . (3.8)

Then, to prove (3.7), it suffices to check that

(3.9)
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and

(3.10)

as n ~ 00, for each € > O. Here we only give proof of (3.9), because the proof of
(3.10) is similar.

Recall X(Wn 1 is a Poisson with

EX(Wnl = Var(X(Wnll = J A(slds.
w"

Since A is cyclic (wit.h period T)', we have that

J A(s)ds = BIWnl + 0(1),
w"

as n ~ 00. Let

c., = [BIW"I- (BIWnll'/2a"J
C2," = [BIWnl + (BjWnll1/

2an],

(3.11)
·(3.12)

where an is an arbitrary sequence such that an ~ 00 and an = o(lWn 11 /2), as
n ~ 00. Then, we can write the probability on the l.h.s. of (3.9) as

f P (is(kn) -sl 2 )1\'\1 I;,kin1 _ ) IX(Wn) = m') P (X(W,,) = m ]
m=k" -I n!\".S € ,

C'.n-l 00

< L P (X(Wn) = m) + L P (X(Wn) = m)
r.-t=kn m=C.!.n+1

+ max P (X(Wnl = m)·
c ., :Sm:SC1."

(3.13)

It suffices now to show that each term on the r.h.s. of (3.13) converges to zero, as
n~oo.

First we show that the first term on the r.h.s. of (3.13) is 0(1), as n ~ 00. Since
IEX(Wn) - BIWnII= O( 1), as n ~ 00, this quantity is equal to

P (X(Wn) ::; Cl,n -1) s P (X(Wnl ::; BIWnl- (BIWnlll/20n)

< P (IX(Wn) - EX(WnlI2 (8IWnlll/20n -IEX(Wnl - 81Wnll)

P ((EX(Wn ll-1/2IX(Wn) - EX(Wn 1I 2 0(1 )On)

< 0(1 1exp (- 2 +O!(l J ' (3.14)
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which is 0 (1 ), since an --7 00, as n --7 00. Here we have usedLemma 1of the Section
5. A similar argument also shows that the second term on the r.h.s. of (3.13) is
0(1), as n --700.

Next we prove that the third term on the r.h.s. of (3.13) is 0(1), as n --700. Let
m = m., be a positive integer, such that CI,n :::;m., :::; C2,n' Then mn - 81Wnl,
which implies that lcn/mn = 0(1), as n --7 00 (by (2.2)). Recall that X(Wn) has
a Poisson distribution with parameter J..l(Wn) = fw ;\(s)ds. A simple calculation,
using Stirling's formula, shows that n

as n -t 00. It is well-known (see, e.g. [9]', p. 15) that, conditionally given
X-n(B,.(s)) = X(Wn) = mn, IS(kn) - s] has exactly the same distribution as

H;;:1 (Zkn:m n ), where Zkn:m n is the kn -th order statistics of a sample Z I , ... ,Zm n

of size mn from the uniform (0, 1) distribution. (We remark in passing that lcn :::;mn
for all n sufficiently large). Note that a similar device was employed by [8] in his
analysis of multivariate nearest neighbor density estimators. As a result, the third
term on the r.h.s. of (3.13) is equal to

(3.15)

Eirst note that, by choosing e:< ;\(s), we have

'Tkn = "fk,., > 'Tkn (1 + _E_\
2IWnl(;\(s) - e ) 2Afs)IW 1"(1__ £_) - 2;\(s)IWnl ;\(s))

. n A( s)

'Tlcn + 'Te:lcn . (3.16)
2;\(s)IWnl 2;\z(s)IWnl

We know that, for each mn,

and

We now need a stochastic expansion for H;;:l (Zkn:mn). First we simplify the r.h.s.
of (1. 7) to get for any x 2 0

= (IWnl/'T + 0(1)) fS
+

x
;\(u)I(u E B,.(s))du

(81Wnl + 0(1)) s-x

( 1 ) r= - + O(lWnrl) ;\(u)I(u E B,.(s))du
8T s-x

1 fS
+

x
= - ;\(u)I(u E B,.(s))du+ O(lWnl-l),

8'1' s-x

Hn(x)

(3.17)
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as n --t 00, uniformly in x. This because f:~:}..(u)I(u E B-r(s))du ~ aT. Define
function H (x), which is equal to the first term on the r.h.s. of (3.17) for x ~ 0, and
zero otherwise. The density h of H is given by

h(x) =
A(S + x)I(s + x E B-r(s))

8T
A(S -x)I(s -x E B-r{s))

+ 8T ' (3.18)

for any x > 0, while h(O) denote the right hand derivative of H at zero. Next note
that

H;;:1 (Zkn :mn) -' inf{x: Hn (x) > Zkn :mn}

= inf{x: H(x) > Zkn:mn + O(IWnl-1
)}

H-1 (z..,«, + O(IWnl-1)) , (3.19)

as n -t 00. Here and elsewhere in this paper we define H-1 (t) = inf{x: H(x) > t},
o ~ t < 1. Now we compute H-1 (0). Since A(S) > 0 and A is continuous at s, we
see from the first term on the r.h.s. of (3.17) that H(x) > 0, while x » O. In other
words, the first term on the r.h.s. of (3.17) is equal to zero, if and only if, x = O.
Hence H-1 (0) = 0. Since h is right continuous at 0, the first (right hand) derivative
of H-1 at 0 can be computed as

]-1-1' '0' 1
. lJ=h(H.-l(O))

8T
=h(O) 27\(5)'

(3.20)

Since H-1' (0) is finite, by Young's form for Taylor's theorem (see [11]. p. 45), we
can write

(3.21)=

as n --t 00. Because A is continuous at s, we have

as n --t 00.

Let Zkn:mn = Zkn:mn - EZkn:mn = Zkn:mn - kn/(mn + 1). Let us write
1 1-

H~ (Zkn:mn) = H~ (Zkn:mn )I(IZkn:mn I ~ €n)
1 -+ H;;: (Zkn:mn )I(IZkn:mn I> en),
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where €n is a sequence of positive real numbers such that €n 10 as n ---100 .. Because

as n ---1 00, by Young's form for Taylor's theorem, we can write
H;;:l(Zkn:mn)I(lZkn:mJ:S en) as (cf. (3.19))

1 -H~ (Zkn:mn)I(IZkn:mJ:S €n)

= H-1 (Zkn:mn +O(IWnl-1))I(IZkn:mJ:S en)

{H-1 ( kn +O(IWnl-1))
mn+1

+(Z, _ kn )H-1'( kn +O(IWI-1))kn .rn n mn + 1 mn + 1 n

+0 (Zkn:mn - mn~l) }I(IZkn:mJ:S en), (3.23)

as n ---100. Substituting (3.21) and '(3.22) into the r.h.s. of (3.23), we then have

H-1 (Z )I(IZ I < ) _ {8Tkn ( ~ ~n kr.:mn kn:mn._€n - 2,,(s)(mn+1)+o\IWniJ

+ (2~~)) Zkn :m" + 0 (Zkn .rn ; ) } IUZkn :m..! :s €n), (3.24)

as n ++ 00. Since rn., 2 C1•n, the first term on the r.h.s. of (3.24) does not exceed

8'Ckn < 8Tkn
2"(5) ([8IWnl - (81W1ll)I/2anl + 1) - 2"(_5) (SIWni - (8IWnl)1/2an)

8Tkn _ Tkn (~) (32-)
2S"(5)IWni (1 - (SIWnll-l/2an) - 2,,(s)IWni + 0 IWnl' . o

as n ---1 00. Combining (3.2!), (3.25), and (3.16), and by noting also that the first
term on the r.h.s. of (3.25) cancels with the first term on the r.h.s. of (3.16), we find
that, for sufficiently large n, the probability appearing in (3.15) does not exceed

First note that, for sufficiently large n, the second term on the- r.h.s. of (3.26)
does not exceed its first term. Now we notice that H;;:l (Zkn:mn) :s H;;:l (1) = f.
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Thenwe find that the third probability on the r.h.s. of (3.26) does not exceed
P(IZkn:m.l > en). For convenience we take €n = (€k.n)/(128r-.(s)IWn\). Then, the
r.h.s. of (3.26) does not exceed

Therefore, for sufficiently large n, the quantity in (3.15) does not exceed

as n ~ 00. By Chebyshev's inequality, we find that the probability on the r.h.s, of
(3.27) is of order 0 (k~ 1), as n ~ 00. By (2.1) and choosing now an = 0 (kn ), as
n ~ 00, we have that the r.h.s. of (3.27) is 0(1) as n, ~ 00. Hence (3.9) is proved.
This completes the proof of Theorem 1. .

4 Proof of Theorem 2

To establish (2.6), we must show that

< 00, (4.1)

for each e > O. By (3.8), to prove (4.1) it suffices to show, for each € > 0,

(4.2)

and

(4.3)

Here we only give the proof of (4.2), because the proof of (4.3) is similar. To prove
(4.2), it suffices to show that, each of the terms on the r.h.s. of (3.13) converges
completely to zero, as n -+ 00.

Let Cl,n and C2,n be as given in (3.11) and (3.12)". In order to deal with the first
and second term of (3.13), the sequence an will now have to satisfy, in addition to
the assumption an = o(lWnlt/2) which was already needed in the proof of Theorem
1, the additional requirement

00L.exp(-o~/3) < 00 -,

n=l
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The argument given in (3.14) will then imply that these terms converge completely
to zero, as n ~ 00.

It remains to show that the third term on the r.h.s. of (3.13) also converges
completely to zero, as n ~ 00. To do this, it is clear from the proof of Theorem 1,
that it suffices now to check that the r.h.s. of (3.27) is summable, for each e > O.

Let us now consider the probability appearing on the r.h.s. of (3.27). For
sufficiently large n, by Lemma 2 (see Section 5), there exists a positive constant
Co such that the probability on the r.h.s. of (3.27) does not exceed

2exp {-Cot~} I

where

t _ ( mn ) 1/2 kn€
n - kn/(mn + 1) (1 - kn/(mn + 1)) 128A(s)IWnl

I

which (for sufficiently large n) can be replaced with impunity by €k,; /(24A(S)).
Hence, for sufficiently large n, the r.h.s. of (3.27) does not exceed

(4.4)

provided we require an to satisfy log an = o(kn), as n ~ 00. Note that, e.g. the
choice an = (kn) 1/2 satisfies each of the three conditions imposed on an, namely
an = 0(JWnI1/2), L:=1 exp(-o~/3) < 00, and log an = o(kn)' provided (2.2) and
(2.5). By assumption (2.5), we have that the r.h.s. of (4.4) is summable. Hence
(4.2) is proved. This completes the proof of Theorem 2.

5 Technical Lemmas
In this section we presents two well-known results which we used in the proof of
Theorem 1 dan Theorem 2.

Lemma 1 Let X be a Poisson random variable with EX > O. Then for any € > 0
~~~ -

(
IX - EXI) { €2 }

P (EXP/2 >€ ~2exp --2 + €(EX)-1/2 . (5.1)

Proof: We refer to Reiss (fID], p. 222).

An exponential bound for 'intermediate' uniform order statistics is given in the
following lemma.
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Lemma 2 Let kn and mn, n = 1,2,... be sequences of positive integers, and
Zkn .rn; denote the k-th order statistic of a random sample of size rn.; from the
uniform distribution on (0,1). If kn/ffin 10 as m., ~ 00, then for each CXn > 0
such that ~1 = o(mnJ<.;:;:I/2) and CXn = 0(k~/2), there exists a positive absolute
constant Co and a (large) positive integer no such that

P (IZkn:mn - m:: 1/ (kn/(ffin + 1)(~ kn/(ffin + 1))) 1/2 ~ CXn)

< 2 exp {-Co cx~} . (5.2)

for all n ~ no.

Proof. A slight modification of the proof of Lemma A2.1. of [1]gives our bound .

•
Acknowledgement: The author is grateful to R. Helmers for suggesting the prob-
lem and his excellent help and comments throughout the preparation of this paper.
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