Perbandingan Kinerja Algoritma Random Forest, AdaBoost, dan XGBoost Dalam Memprediksi Resiko Penyakit Osteoporosis
Abstrak
Penyakit tulang yang disebut osteoporosis ditandai oleh berkurangnya massa tulang dan meningkatnya kerapuhan, yang meningkatkan kemungkinan patah tulang terutama pada pinggul, tulang belakang dan pergelangan tangan. Penyakit ini dapat dialami oleh perempuan dan laki-laki, khususnya usia tua. Penyakit ini umumnya tidak menimbulkan gejala pada tahap awal, sehingga prediksi dini sangat penting untuk pencegahan dan penanganan. Tujuan dari penelitian ini adalah untuk membandingkan kinerja tiga algoritma pembelajaran mesin, yaitu Random Forest, AdaBoost dan XGBoost, dalam memprediksi resiko osteoporosis. Dataset yang digunakan berjumlah 1781 data dengan tiga skema pembagian data 80:20, 70:30 dan 60:40. Pada algoritma Random Forest, skema 80:20 memberikan hasil terbaik dengan akurasi 87,11%, dan presisi 89,09%. Sementara itu, algoritma AdaBoost menunjukkan performa terbaik pada skema 60:40 dengan akurasi 92,01% dan presisi 93,13%. Algoritma XGBoost menunjukkan hasil terbaik pada skema 80:20 dengan akurasi 90,20% dan presisi 90,77%. Hasil penelitian menunjukkan bahwa algoritma AdaBoost memiliki kinerja terbaik di antara ketiga algoritma yang diuji. Setelah itu mengimplementasikan model prediksi resiko osteoporosis ke dalam website, yang memungkinkan pengguna melakukan prediksi berdasarkan 14 variabel: umur, jenis kelamin, riwayat keluarga, etnis, penggunaan obat, riwayat patah tulang, perubahan hormonal, asupan vitamin D, asupan kalsium, berat badan, aktivitas fisik, konsumsi alcohol, merokok dan kondisi medis.
Penulis
This work is licensed under a Creative Commons Attribution 4.0 International License.