Association of Central Obesity and Salty Food Consumption with Small Dense LDL-C in Middle-Aged Indonesian Adults

Yeni Rohmaeni^{1*}, Hardinsyah², Ikeu Tanziha³

¹Department of Nutrition, Faculty of Health and Science, Universitas Muhammadiyah Bogor Raya,

Bogor 16640, Indonesia

²Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor 16680, Indonesia

ABSTRACT

This study aimed to investigate the association between central obesity and salty food consumption with the elevated of Small Dense Low-Density Lipoprotein-Cholesterol (sdLDL-C) among middle-aged Indonesian adults. Dietary behavior, together with the presence of obesity, leads to an increase in sdLDL-C. The study selected 8,611 subjects aged 49–64 years, from secondary data of a population-based survey conducted by the Ministry of Health of the Republic of Indonesia. The sdLDL-C concentration was determined using the Sampson equation. A significant association was observed between salty food consumption (OR=1.20; 95% CI: 1.04–1.38), general obesity (OR=2.59; 95% CI: 2.23–30), central obesity (OR=2.39; 95% CI: 2.11–2.70) and sdLDL-C. Diabetes and hypertension were positively associated with sdLDL-C, whereas Physical Activity (PA) was negatively associated with sdLDL-C. This study showed that obesity and consumption of salty food is associated with the increase of sdLDL-C.

Keywords: central obesity, Indonesia, middle-aged, salty food, sdLDL-C

INTRODUCTION

Oxidative stress induced by obesity (Thambiah & Lai 2021) and high salty food consumption is a possible mechanism that triggers an elevated level of sdLDL-C due to increased VLDL-C concentration (Thuesen *et al.* 2015). The sdLDL-C is more atherogenic and the homogeneous assay is usually used to measure its concentration, while the current study generated the equation to estimate sdLDL-C according to the original lipid measurement (Sampson *et al.* 2021). This study aimed to analyse the association between central obesity and salty food consumption and elevated sdLDL-C among middle-aged Indonesian adults.

METHODS

The study selected 8,611 subjects, aged 49–64 years, from secondary data of a population-based survey conducted by the Ministry of Health of the Republic of Indonesia. The data were collected by interview and direct measurement. The Sampson equation was used to define sdLDL-C, where:

$$ElbLDL-C = 1.43 \times LDL-C - (0.14 \times (\ln(TG) \times LDL-C)) - 8.99 \text{ and}$$
$$sdLDL-C = LDL-C - ElbLDL-C$$

which refers to the latest LDL-C calculation equation (cLDL-C) proposed by Sampson et al. (2021). Body Mass Index (BMI) was categorised as normal (≤ 25.0), overweight (25.1 to 27.0) and obese (>27.1), and central obesity was defined as waist circumference ≥ 90 cm for men and ≥ 80 cm for women. Blood pressure was determined according to the Global Hypertension Practice Guidelines (systolic pressure ≥140 mmHg or diastolic pressure ≥90 mmHg). Diabetes Mellitus (DM) was determined by ADA classification or clinical diagnosis. The sdLDL-C was defined as low (\leq 46.12 mg/dL) and high (\geq 46.12 mg/dL). Data were then analysed using SPSS version 25. Binary logistic regression was used to analyse between variables and sdLDL-C categories. Associations are illustrated by Odds Ratios (OR) and 95% CIs.

RESULTS AND DISCUSSION

Table 1 shows high level of sdLDL-C was found in subjects who were obese, female,

^{*}Corresponding Author: tel: +6281321196684, email: yenirohmaeni@gmail.com

⁽Received 14-06-2023; Revised 17-07-2023; Accepted 29-07-2023; Published 30-12-2023)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

J. Gizi Pangan, Volume 18, Supp.1, December 2023

Rohmaeni et al.

Variable	Distribution high sdLDL-C		High sdLDL-C	
	% (95% CI)	р	OR (95% CI)	р
Gender				
Men	25.8 (24.0-27.8)	< 0.001	1.00	< 0.001
Women	30.3 (28.5–32.1)		1.25 (1.10-1.41)	
Region	· · · · · ·			
Rural 23.5 (22.0–25.1)	33.2 (31.0-35.5)	< 0.001	1.00	< 0.001
Urban 33.2 (31.0–35.5)	23.5 (22.0–25.1)		1.62 (1.41–1.85)	
Education	· · · · · ·			
Primary School	26.0 (24.6–27.5)		1.00	
Secondary School	39.5 (35.2-44.0)	< 0.001	1.86 (1.53-2.26)	< 0.001
College or above	46.2 (39.6–52.9)		2.44 (1.85–3.22)	
Occupation				
Farmer/fisher/laborer	21.1 (19.5–22.9)		1.00	
Employee	36.2 (31.0-41.7)		2.12 (1.64-2.73)	
Self-employed	35.8 (31.9–39.8)	< 0.001	2.08 (1.71–2.54)	< 0.001
Others	26.6 (20.7–33.4)		1.35 (0.96–1.90)	
Unemployed	33.1 (30.9–35.4)		1.85 (1.61–2.12)	
Economic status	· · · · · ·			
Very poor	21.2 (18.7–23.8)		1.00	
Poor	20.3 (18.0–22.7)		0.95 (0.77-1.17)	0.900
Middle-class	26.8 (24.4–29.4)	< 0.001	1.36 (1.12–1.66)	< 0.001
Rich	33.6 (30.5–36.9)		1.89 (1.53–2.33)	< 0.001
Very rich	39.4 (35.9–42.9)		2.42 (1.96–2.99)	< 0.001
Physical activity	· · · · · ·			
Less	33.4 (29.0-38.1)		1.00	
Moderate	34.0 (31.0-37.2)	< 0.001	1.03 (0.82-1.29)	0.959
High	26.0 (24.6-27.5)		0.70 (0.56-0.87)	< 0.001
Consumption of salty food	· · · · · ·		· · · · · ·	
<1 time/day	25 8 (23 7-28 0)		1.00	
>1 time/day	29.4(27.7-31.2)	< 0.015	1 20 (1 04–1 38)	0.015
General obesity	2).1(27.7 51.2)		1.20 (1.01 1.50)	
Normal weight	22.6 (21.1–24.1)		1.00	
Overweight	393(354-433)	<0.001	2 22 (1 86-2 65)	<0.001
Obese	431(400-463)	-0.001	$2.22(1.00 \ 2.03)$ 2.60(2.23-3.03)	-0.001
Central Obesity			2.00 (2.23 5.05)	
Normal weight	21 8 (20 3-23 3)		1.00	
Obese	40.0 (37.7-42.3)	< 0.001	2.39 (2.11-2.70)	< 0.001
Diabetes Mellitus	1010 (3717 1213)		2.39 (2.11 2.70)	
No	257(243-272)		1.00	
Yes	40.4 (36 8-44 1)	< 0.001	1.96 (1.66–2.31)	< 0.001
Hypertension	10.1 (30.0 11.1)		1.50 (1.00 2.51)	
No	24.0(22.3-25.7)	< 0.001	1.00	< 0.001
Yes	33.8 (31.7–36.0)		1.62 (1.43–1.84)	

 Table 1. Distribution of study subjects and binary logistic regression analysis of factors associated with sdLDL-C

*Data are presented as 95% CI

All data were weighted to represent the total population of middle-aged Indonesian adults based on the 2013 population-based survey Abdominal obesity is defined as WC≥90 cm for men and WC≥90 for women, using WHO classification for Asians OR: Odds Ratio; CI: Confidence Interval: sdLDL-C: Small Dense Low-Density Lipoprotein-Cholesterol; WC: Waist Circumference educated, employed and belonged to the "very rich" group, had DM and hypertension and lived in urban area. High sdLDLC was also found in subjects who were less physically active and consumed salty foods (≥ 1 times/day). The study showed that general and central obesity increased the risk of sdLDL-C by 2.60 and 2.39 times, respectively. High intake of salty foods, DM and hypertension increased sdLDL-C by 20, 96 and 62%, respectively. In contrast, physical activity reduced it by 30%.

The data showed that general and central obesity was highly prevalent in subjects with high sdLDL-C levels. The findings are similar to those of a previous study in China (Fan et al. 2019). The possible mechanism of obesity being associated with high sdLDL-C is stimulated by the insulin resistance present in diabetic dyslipidaemia (Thambiah & Lai 2021), which induces endothelial dysfunction that increases oxidative stress. This phenomenon is often found in obese subjects (Fan et al. 2019; Thambiah & Lai 2021). Therefore, the subjects with DM and hypertension had higher sdLDL-C levels than those without. The study also showed that consumption of salty foods is closely related to sdLDL-C.

CONCLUSION

The results showed that sdLDL-C levels were positively associated with central and general obesity, salty food consumption, DM and hypertension, while negatively associated with physical activity. This findings suggested greater awareness for sdLDL-C through controlled body weight, balanced diet and physical activity.

ACKNOWLEDGEMENT

We would like to thank the Ministry of Health for the provision of the data for this study.

DECLARATION OF CONFLICT OF INTERESTS

The authors have no conflicts of interest to declare.

REFERENCES

- Fan J, Liu Y, Yin S, Chen N, Bai X, Ke Q et al. 2019. Small dense LDL cholesterol is associated with metabolic syndrome traits independently of obesity and inflammation. Nutr Metab (Lond) 16(1):1–9. https://doi. org/10.1016/j.plabm.2021.e00248
- Sampson M, Wolska A, Warnick R, Lucero D, Remaley AT. 2021. A new equation based on the standard lipid panel for calculating small dense low-density lipoproteinholesterol and its use as a risk-enhancer Test. Clin Chem 67(7):987–997. https:// doi.org/10.1186/s12986-019-0334-y
- Thambiah CS, Lai LC. 2021. Diabetic dyslipidaemia. Pract Lab Med 26:e00248. https://doi.org/10.1016/j.plabm.2021. e00248
- Thuesen BH, Toft U, Buhelt LP, Linneberg A, Friedrich N, Nauck M, Wallaschofski H, Jørgensen T. 2015. Estimated daily salt intake in relation to blood pressure and blood lipids: The role of obesity. Eur J Prev Cardiol 22(12):1567–1574. https:// doi.org/10.1177/2047487314553201