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ABSTRACT

This study aimed to evaluate the growth performance and carbohydrate metabolism of Pacific whiteleg shrimp 
after feeding with different cinnamaldehyde concentrations and protein-energy ratios. The study used a completely 
randomized design with six treatments in triplicates. The treatments were S003213; treatment S053213; treatment 
S052814; treatment S102814; treatment S052815; and treatment S102815. The study was conducted for 56 days 
in a 76 L volume aquarium using shrimps with 1.38 ± 0.01 g at 200 individuals/m3. The results showed that the 
S053213 treatment was significantly different (P<0.05) compared to other treatments for the specific growth rate 
(SGR). Hexokinase (hk) and phosphoenolpyruvate carboxykinase (pepck) produced by the S053213 treatment 
were significantly different (P<0.05) from the S003213 treatment. The S052815 and S102815 treatments produced 
higher protein retention (PR) and protein efficiency ratio (PER) compared to other treatments (P<0.05) and also 
produced the same final average weight (FW) as the S003213 treatment. This research shows that vannamei fed 
by 0.10% supplementation dose of cinnamaldehyde with a decreased feed protein up to 28% and C/P ratio 14 and 
15 are able to utilize feed as well as protein 32% without cinnamaldehyde. The addition of cinnamaldehyde with a 
higher C/P ratio requires a higher dose of cinnamaldehyde than the optimal dose.
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ABSTRAK

Penelitian ini bertujuan untuk mengevaluasi kinerja pertumbuhan dan metabolisme karbohidrat udang vaname 
Litopenaeus vannamei yang diberikan kadar sinamaldehid pada protein dan rasio energi pakan berbeda. Penelitian 
menggunakan rancangan acak lengkap (RAL) dengan enam perlakuan dan tiga ulangan. Adapun perlakuan 
terdiri dari perlakuan kontrol S003213; perlakuan S053213; perlakuan S052814; perlakuan S102814; perlakuan 
S052815; dan perlakuan S102815. Penelitian dilakukan selama 56 hari pemeliharaan pada akuarium volume 76 
L menggunakan udang vaname berukuran 1,38 ± 0,01 g dengan kepadatan 200 individuals/m3. Hasil penelitian 
menunjukkan bahwa perlakuan S053213 berbeda nyata (P<0,05) dibandingkan perlakuan lainnya untuk parameter 
laju pertumbuhan spesifik (SGR). Parameter heksokinase (hk) dan phosphoenolpyruvate carboxykinase (pepck) 
yang tertinggi dihasilkan oleh perlakuan S053213 dan berbeda nyata (P<0,05) dengan perlakuan S003213. Pada 
perlakuan S052815 dan S102815 menghasilkan retensi protein (PR) dan rasio efisiensi protein (PER) lebih tinggi 
dibandingkan dengan perlakuan lainnya (P<0,05) serta menghasilkan bobot rata-rata akhir (FW) sama dengan 
perlakuan S003213.  Penelitian ini menunjukkan bahwa udang vaname yang diberikan suplementasi sinamaldehid 
sebesar 0,10% dengan protein pakan 28% dan rasio C/P menjadi 14 dan 15 mampu pemanfaatan protein pakan 
yang sama dengan protein pakan 32% tanpa suplementasi sinamaldehid. Penambahan sinamaldehid dengan rasio 
C/P yang lebih tinggi membutuhkan dosis sinamaldehid yang lebih tinggi dari dosis optimal.

Kata kunci: metabolisme karbohidrat, pertumbuhan, rasio energi pakan, sinamaldehid, udang vaname
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INTRODUCTION

Pacific whiteleg shrimp Litopenaeus vannamei 
is one of the aquaculture commodities with 
high economical value, intriguing the shrimp 
culturists to improve their production and utilize 
the land maximally. Nevertheless, diseases and 
high feed cost are drawbacks in shrimp culture 
(Fan et al., 2016; Anderson et al., 2019). Feed 
cost in shrimp culture reaches up to 60%, which 
needs an appropriate feed selection in quantity 
and quality as an important factor in culture 
activities. Feed selection should notice on the 
appropriate nutrients in shrimp at ponds for 
efficient utilization and proportional requirement. 
Appropriate nutrient compositions, either macro- 
or micronutrients, become an important condition 
to support the shrimp growth. 

One of the issues related to nutrient efficiency 
is the capability of shrimp to utilize non-protein 
energy, like carbohydrates or lipids. Protein is an 
important nutrient for shrimp for meat formation, 
tissue repairment, body functional maintenance, 
and a main ingredient in formulated feed for 
growth acceleration (Wang et al., 2016). Lipids 
and carbohydrates are non-protein energy sources 
that affect growth, while protein is utilized for 
growth. However, the protein ingredient source 
availability is declining and causes the feed cost 
tends to be expensive, while shrimps require 
protein as the main source for growth optimization 
(Kriton et al., 2018; Li et al., 2023). Therefore, an 
alternative energy source that can be converted 
for shrimp growth is necessary. 

A component of energy source in artificial 
feed for shrimp is carbohydrates. Carbohydrates 
are energy components that can act as a protein-
sparing effect and help reduce the feed cost due 
to high protein ingredient source in aquaculture 
activities (Wang et al., 2015; Wang et al., 2016). 
Carbohydrates are quite available everywhere as 
the cheapest energy source for animal nutrients 
and as a primary energy source (Wang et al., 
2016; Takahashi et al., 2018;  Li et al., 2019). 
Nevertheless, shrimp has a trouble utilizing 
carbohydrates, mainly glucose, as rising up the 
carbohydrates in feed can impact on the growth 
reduction (Wang et al., 2016).

A strategy to improve the carbohydrate 
utilization in shrimp is through bioactive 
compounds dietary supplementation such as 
cinnamaldehyde, isolated mainly from cinnamon 
(Cinnamomum verum). Cinnamaldehyde is a 
bioactive compound from cinnamons, that can 

improve animal growth and feed efficiency (Zhu 
et al., 2017; Chapman et al., 2019; Zhou et al., 
2020), including the carbohydrate metabolism 
regulation (Kumar et al., 2012). Cinnamaldehyde 
absorption can induce the expression of insulin-
like growth factor (IGF-1) mRNA and activate 
insulin through insulin-receptor (IR) (Nikzamir 
et al., 2014). Moreover, insulin induces the 
expression of glucose-transporter mRNA that 
transports glucose into the cells (Kipmen‐Korgun 
et al., 2009). This condition can also increase the 
use of glucoses as an energy source (Zhu et al., 
2017) and decrease the lipogenesis process. In 
addition, the IGF-1 mRNA has roles in protein 
accumulation, mainly for muscle formation 
and fish biomass elevation through protein 
biosynthesis and collagen in the tissues (Takasao 
et al., 2012).      

Several studies have reported the dietary 
cinnamaldehyde or cinnamon supplementations 
for aquatic animals, namely striped catfish 
Pangasius hypophthalmus, common carp 
Cyprinus carpio, Nile tilapia Oreochromis 
niloticus, grass carp Ctenopharyngodon idella, 
dan pacific whiteleg shrimp Litopenaeus 
vannamei (Setiawati et al., 2016a; Laheng et 
al., 2016;  Jusadi et al., 2016; Amer et al., 2018; 
Ghafoor, 2020;  Zhou et al., 2020; Abd El-Hamid 
et al., 2021;  Mousa et al., 2021; Shan et al., 2021; 
Junior et al., 2022; Zhou et al., 2023). Dietary 
supplementation of cinnamaldehyde improves 
the disease resistance and reduces the lipid 
accumulation in whiteleg shrimp (Safratilofa et 
al., 2015; Friedman, 2017; Doyle & Stephens, 
2019; Chen et al., 2022). The striped catfish 
fed with 1% of cinnamon-supplemented diet 
showed improved growth, feed efficiency, protein 
retention, and meat quality (Setiawati et al., 
2014; Setiawati et al., 2015;  Rolin et al., 2017; 
Wahyudi et al., 2023). In shrimp, the application 
of cinnamaldehyde as a diet supplement is still 
limited. Therefore, this study aimed to evaluate 
the dietary supplementation of cinnamaldehyde 
on the growth performance and carbohydrate 
metabolism in Pacific whiteleg shrimp fed with 
different protein-energy levels and ratios.       

MATERIALS AND METHOD

Materials
The Pacific whiteleg shrimps that were used in 

this study had an average weight of 1.38 ± 0.01 g 
and were obtained from the PT. Syaqua Indonesia, 
Banten, West Java. These shrimps were previously 
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reared for 40 days from the post-larvae (PL) period. 
Shrimps were reared in the Laboratory of Fishery 
Production, College of Vocational Studies, IPB 
University, Bogor, Indonesia. Cinnamaldehyde as 
the supplement in this study was a refined product 
of cinnamaldehyde (C9H8O) GRM3277-Himedia.  

Methods
This study was conducted in the IPB University. 

Shrimp rearing and sampling were performed in 
the Laboratory of Fishery Production, College 
of Vocational Studies, IPB University, Bogor, 
Indonesia. Proximate and enzymatic analyses 
were performed in the Laboratory of Fish 
Nutrition, while gene expression was analyzed in 
the Laboratory of Aquatic Organism Reproduction 
and Genetics, Department of Aquaculture, Faculty 
of Fisheries and Marine Sciences, IPB University, 
Bogor, Indonesia. A further gene expression 
analysis was continued in the Advanced Research 
Laboratory, IPB University, Bogor, Indonesia. 

Experimental diets
The diet fed to the shrimp was a formulated 

diet with cinnamaldehyde supplementation in 
different protein-energy levels and ratio (C/P). 
The treatments were composed of S003213 (0% 
cinnamaldehyde supplementation in 32% feed 
protein and C/P ratio 13); treatment S053213 
(0,05% cinnamaldehyde supplementation in 32% 
feed protein and C/P ratio 13); treatment S052814 
(0.05% cinnamaldehyde supplementation in 28% 
feed protein and C/P ratio 14); treatment S102814 
(0.10% cinnamaldehyde supplementation in 28% 
feed protein and C/P ratio 14); treatment S052815 
(0.15% cinnamaldehyde supplementation 
in 28% feed protein and C/P ratio 15); and 
treatment S102815 (0.20% cinnamaldehyde 
supplementation in 28% feed protein and C/P 
ratio 15). As all diets were proportional with the 
treatments and C/P applied, the compositions 
were different among the treatments (Table 
1). Proximate analysis was also conducted to 
determine the nutrient contents of the diets, 

Table 1. Composition of the experimental diets for each treatment for pacific whiteleg shrimp.

Ingredients (%)
Treatment

S003213 S053213 S052814 S102814 S052815 S102815
Fishmeal 20.00 20.00 15.00 15.00 15.00 15.00
Corn gluten meal 8.00 8.00 10.00 10.00 10.00 10.00
Meat bone meal 10.00 10.00 10.00 10.00 11.00 11.00
Wheat pollard 15.00 15.00 18.00 18.00 20.00 20.00
Corn meal 14.00 14.00 17.20 17.50 14.45 14.90
Soybean meal 17.00 17.00 11.80 12.85 11.50 11.00
Cassava starch 4.00 3.95 4.00 3.50 4.00 4.00
Squid oil 2.00 2.00 1.88 1.85 3.00 3.00
Fish oil 2.00 2.00 1.87 2.00 3.00 3.00
Cinnamaldehyde 0 0.05 0.05 0.10 0.05 0.10
Lysine 0.30 0.30 0.30 0.30 0.30 0.30
Lecithin 0.80 0.80 0.80 0.80 0.80 0.80
DL-Methionine 0.30 0.30 0.30 0.30 0.30 0.30
Choline chloride 0.30 0.30 0.30 0.30 0.30 0.30
Mono-calcium 
phosphate 1.00 1.00 1.00 1.00 1.00 1.00

Cholesterol 0.30 0.30 0.30 0.30 0.30 0.30
Vitamin Mix 1.00 1.00 2.00 2.00 1.00 1.00
Mineral Mix 1.00 1.00 2.00 2.00 1.00 1.00
Carboxymethylcellulose 
(CMC) 3.00 3.00 3,00 3.00 3.00 3.00

Note: The cinnamaldehyde is a clear colorless or yellow liquid with a strong cinnamon odor at a density of 1.045-
1.055 g/mL and a purity of 98%.
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following the procedures of the Association of 
Official Analytical Chemists (AOAC, 2012).   

Maintenance and sampling of shrimp
Shrimps were reared for 56 days in glass 

aquarium volume 76 L and stocking density of 
200 individuals/m3.  Shrimps were fed with the 
treatment diets four times a day at 07.00, 11.00, 
15.00, and 19.00 WIB. The rearing procedure 
was in accordance with Wiyoto et al. (2017) and 
Ramadhani et al. (2022). The shrimp sampling 
was performed at the initial rearing period, 
weekly, and the final rearing period by measuring 
the shrimp weight and counting the number of 
shrimps. 

The water quality during rearing was 
maintained at optimal level by removing the 
diet waste once a week and replacing the water 
gradually at 20-30% of the water volume. Water 
quality was maintained gradually and remained 
at a temperature of 28–30°C, a dissolved oxygen 
of 4.7–6.4 mg/L, a pH of 6.8–8.0, an ammonia 
concentration of 0.02–0.05 mg/L, a salinity 
of 25-26 g/L. The parameters observed in this 
study were composed of gene expression related 
to carbohydrate metabolism, glycogen content 
measurement in hepatopancreas and body muscle, 
growth performance, and diet utilization.  

Gene Expression Analysis
Gene expression analysis was observed at 

the final rearing period by taking the shrimp 
hepatopancreas at 12 hours after rearing. 
Carbohydrate metabolism was evaluated by the 
qRT-PCR through gene expression parameter 
associated with carbohydrate metabolism: 1) 
glucose transport: glut-1; 2) glycolysis: hexokinase 
(hk), and phosphoenolpyruvate carboxykinase 
(pepck). The total RNA was extracted by crushing 

the hepatopancreas in 200 μL of GENEzolTM 
Reagent solution (Geneaid, Taiwan), following 
the recommended protocols. The concentrated 
RNA was measured with a spectrophotometer 
at 260 nm absorbance wavelength, multiplied by 
the RNA constant and dilution factor. The RNA 
integrity was evaluated by the 2% agarose gel 
diluted in 0.1% diethylpyrocarbonate (DEPC) 
solution. The RNA purification and cDNA 
synthesis were performed using 1 μg of the 
total RNA with RevetraAce qPCR RT mastermix 
and gDNA remover kit (Toyobo), following the 
recommended protocols. 

The cDNA synthesis success was assessed from 
the β-actin amplification. The gene expression 
analysis was performed using the real-time PCR 
(qPCR). The qPCR analysis was performed in 
a Rotor-gene 6000 machine (Corbett, USA). 
The reaction in the process was occurred in the 
total volume of 20 μL, containing 10 μL of 2× 
SensiFAST SYBR NO-ROX (Bioline, UK), 0.8 μL 
(10 μM) of primer F and R, 10 ng of cDNA from 
the hepatopancreas, and 4.4 μL of water. 

Primers were amplified through the PCR 
cycle, containing pre-denaturation at 95°C for 2 
min, and 45 cycles of denaturation at 95°C for 
15 s, annealing at 60°C for 20 s, and extension 
at 72°C for 20 s. The melting curve analysis 
was evaluated with primer specification in 
amplification program. The gene expression 
level was determined by normalizing the 
β-actin and following the protocols (Livak & 
Schmittgen, 2001). The mRNA gene primers 
used in carbohydrate metabolism expression are 
presented in Table 3. 

Glycogen Analysis
The shrimp hepatopancreas and body were 

preserved and homogenized by chopping. Each 

Table 2. Proximate analysis of feed for each treatment.
Composition S003213 S053213 S052814 S102814 S052815 S102815
Moisture (%) 7.93 7.84 8.71 8.55 8.75 8.63

Ash (%) 8.96 9.16 7.89 7.97 6.37 6.31
Protein (%) 32.03 32.04 27.99 27.88 27.96 27.98
Lipid (%) 8.26 8.30 7.74 7.45 9.31 9.13

Crude fiber (%) 4.18 3.54 5.88 5.92 5.07 5.06
NFE 38.64 39.12 41.79 42.24 42.54 42.89

GE (kcal/kg)g 4154.10 4178.48 4008.11 3992.88 4184.72 4183.93
C/P 13.0 13.0 14.3 14.3 15.0 15.0

Note: *NFE = nitrogen-free extract = 100 - (protein + lipid + moisture + ash + crude fiber); **GE = gross energy 
= (% protein × 5.6 kcal) + (% lipid × 9.4 kcal) + (%NFE × 4.1 kcal) (Watanabe, 1988).
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of these samples were weighed at 0.5-2.0 g and 
dried in an oven at 100°C for 24 h to measure the 
moisture content of the samples. Furthermore, 
glycogen analysis was performed, following 
Takeuchi (1988).     

Growth performance and feed utilization
Growth performance determined in this study 

was composed of final weight, specific growth 
rate (SGR), feed conversion ratio (FCR), and 
survival rate (SR). The SGR (Yang et al., 2022), 
SR, FCR (Cai et al., 2022), RP, and PER (Zhang 
et al., 2023) were calculated at the final rearing 
period with the following formula. 

Data analysis
The data results were tabulated in MS. Excel 

and analyzed with an ANOVA method using SPSS 
22.0 stastistics software. The homogeneity level 
was previously determined using a one-sample 
Kolmogorov-Smirnov test. As a significant 
difference among the treatment data was occurred, 
data were continuously analyzed the Duncan’s 
test at 95% of confidence level. 

RESULTS AND DISCUSSION

Results 
Growth performance

The growth performance of Pacific whiteleg 
shrimp fed with cinnamaldehyde-supplemented 
diets and different protein-energy ratios (C/P) 
for 56 days is presented in Table 4. The dietary 

Table 3. Primer sequences of genes related to carbohydrate metabolism in shrimp analyzed in this study.
Gen Symbol Sequence Function References

Glucose 
transporter 1 GLUT1

F: TGG CAT TGA GCA ACT TCT TG
Glucose 

Transporter
(Lage et 

al., 2017)R: TAG GGC TCT TCG TGC TTC AT
AAC GTG TCA GCC TTC TCT TC

Heksokinase HK
F: AGT CGC AGC AAC AGG AAG TT

Glycolysis (Lage et 
al., 2017)R: CGC TCT TCT GGC ACA TGA TA

Fosfoenolpiruvat 
karboksikinase PEPCK F: GATGTCACCATCACCTCGTG

Gluconeogenesis (Lage et 
al., 2017)R: CTCATGGCTCCTCCTACCAG

β-actin β ACT
R: GAGCAACACGGAGTTCGTTGT

Housekeeping
Gen Bank 

accession no. 
AF300705F: CATCACCAACTGGGACGACATGGA

Table 4. Growth performance of Pacific whiteleg shrimp Litopenaeus vannamei after feeding with cinnamaldehyde-
supplemented diet and different protein-energy ratios.

Treatment IW (g) FW (g) SR (%) SGR (%/day) FCR
S003213 1.38 ± 0.01a 6.68 ± 0.08 c 93.33 ± 0 a 2.86 ± 0.02c 1.43 ± 0.03 c

S053213 1.38 ± 0.02 a 7.86 ± 0.08 d 95.56 ± 3.85 a 3.16 ± 0.03d 1.30 ± 0.04 a

S052814 1.39 ± 0.01 a 5.90 ± 0.05 a 93.33 ± 0 a 2.61 ± 0.02a 1.47 ± 0.04 c

S102814 1.36 ± 0.01 a 6.20 ± 0.05 b 93.33 ± 0 a 2.73 ± 0.03b 1.48 ± 0.04 c

S052815 1.38 ± 0.01 a 6.25 ± 0.05 b 95.56 ± 3.85 a 2.74 ± 0.01b 1.37 ± 0.04 b

S102815 1.39 ± 0.01 a 6.63 ± 0.03 c 95.56 ± 3.85 a 2.83 ± 0.02c 1.36 ± 0.03 ab

Note: IW = average weight of shrimp at the initial rearing period, FW = average weight of shrimp at the final 
rearing period (H56), SGR = specific growth rate, FCR = feed conversion ratio, SR = survival rate. Uppercase 
letters behind the mean (±standard deviation) in the same row indicate a significant difference (P<0.05).
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supplementation of 0.05% cinnamaldehyde with 
32% protein (S053213 treatment) provides a 
significant different value on the FW and SGR 
parameters (P<0.05). Meanwhile, the dietary 
supplementation of cinnamaldehyde had no 
significant effect on SR parameter. In general, the 
shrimp weight gain in the S053213 treatment in the 
diet produced a higher FW than other treatments 
(S003213; S052814; S102814; S052815 and 
S102815). The FCR value S102815; S052815 
and S053213 was lower than other treatments.   

Nutrient utilization parameters
The nutrient utilization parameters in shrimp, 

namely protein retention (PR) and protein-
efficiency ratio (PER), are presented in Table 
5. The results indicate the highest PR is shown 
in the S102815 treatment and significantly 
different (P<0.05) from the S003213, S053213, 
S052814 and S102814 treatments, but showing 
an insignificant difference with the S052815 
treatment. The highest PER value was obtained 
from the S102815 treatment at 2.63 ± 0.06, but 
was insignificantly different from the S052815 
treatment and significantly different from the 
S003213, S053213, S052814, S102814 treatments 
(P<0.05).  

Glucose parameters
The glucose, muscle glycogen, and liver 

glycogen contents are presented in Table 6. The 
glucose value at S003213 treatment was higher 

than other treatments (P<0.05). The S053213 
treatment produced a higher muscle glycogen than 
other treatments (P<0.05). Meanwhile, the liver 
glycogen content had no significant difference 
among the treatments. 

Shrimp body proximate parameters 
The nutrient composition of shrimps after 

feeding with cinnamaldehyde-supplemented 
diets is presented in Table 7. The results showed 
that the S053213 treatments produced a higher 
protein content than other treatments, but was 
insignificantly different from other treatments. 
Treatments S003213 and S053213 produced less 
fat compared to other treatments (P<0.05).  

Expression of carbohydrate metabolism genes
The carbohydrate metabolism-related genes 

were measured from the hepatopancreas samples 
of the shrimp at the final rearing. The gene 
expression parameters were composed of glut1, 
hk, and pepck (Figure 1). In glut1 gene expression, 
the S003213 treatment obtained the lowest value 
and a significantly different value (P<0.05) among 
other treatments (S053213, S052814, S102814, 
S052815 and S102815). The hk gene expression 
in the S053213 treatment obtained the highest 
value, compared to other treatments, but showing 
an insignificant difference. The highest pepck 
gene expression was obtained from the S053213 
treatment and significantly different from the 
S003213 treatment (P<0.05), but showing 

Table 5. Protein retention (%), protein efficiency ratio at the final rearing in Pacific whiteleg shrimp.        
Treatment PR (%) PER
S003213 29.30 ± 0.64 a 2.03 ± 0.03 a

S053213 35.76 ± 0.71 c 2.39 ± 0.07 b

S052814 33.63 ± 0.90 b 2.41 ± 0.06 b

S102814 35.53 ± 0.75 c 2.47 ± 0.08 b

S052815 37.98 ± 0.38 d 2.60 ± 0.08 c

S102815 37.88 ± 0.77 d 2.63 ± 0.06 c

Note: PR = protein retention; PER: protein eficiency ratio.

Table 6. Blood glucose, muscle and liver glycogen at the final rearing period of Pacific whiteleg shrimp
Treatment Glucose (mg/100mL) Muscle glycogen (mg/g) Liver glycogen (mg/g)
S003213 44.032 ± 0.485 b 6.882 ± 0.043 a 1.252 ± 0.012 a

S053213 42.635 ± 0.441 a 7.669 ± 0.216 b 1.278 ± 0.014 a

S052814 42.797 ± 0.231 a 6.762 ± 0.076 a 1.259 ± 0.008 a

S102814 42.359 ± 0.646 a 6.823 ± 0.111 a 1.259 ± 0.008 a

S052815 42.359 ± 0.646 a 6.871 ± 0.085 a 1.246 ± 0.014 a

S102815 42.289 ± 0.449 a 6.893 ± 0.208 a 1.267 ± 0.009 a

Note: Different superscript letters at the same row indicate a significant difference value (P<0.05).
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Table 7.  Proximate analysis of Pacific whiteleg shrimp at the final rearing period (% in wet base).
Treatment Moisture Ash Protein Lipid Crude fiber NFE
S003213 77.90 ± 0.09 d 3.77 ± 0.03 a 14.20 ± 0.38 a 1.32 ± 0.09 a 1.34 ± 0.07 ab 1.43 ± 0.34 b

S053213 77.43 ± 0.30 cd 4.59 ± 0.20 bc 14.79 ± 0.15 a 1.27 ± 0.04 a 1.47 ± 0.15 b 0.47 ± 0.23 a

S052814 77.24 ± 0.47 cd 4.23 ± 0.05 bc 14.26 ± 0.49 a 2.63 ± 0.27 b 1.36 ± 0.10 ab 0.34 ± 0.12 a

S102814 76.65 ± 1.07 bc 4.16 ± 0.47 bc 14.68 ± 0.07 a 2.54 ± 0.01 b 0.98 ± 0.02 a 1.02 ± 0.66 ab

S052815 75.26 ± 0.18 a 4.92 ± 0.55 c 14.74 ± 0.55 a 2.38 ± 0.40 b 1.38 ± 0.10 ab 0.99 ± 0.64 b

S102815 76.01 ± 0.34 ab 4.29 ± 0.13 ab 14.77 ± 0.45 a 2.31 ± 0.51 b 1.27 ± 0.48 ab 1.34 ± 0.09 b

Note: Different superscript letters at the same row indicate a significant difference value (P<0.05).

Figure 1. Carbohydrate metabolism gene expressions in Pacific whiteleg shrimp after feeding with cinnamaldehyde-
supplemented diets at different protein-energy levels and ratios: (A) Glucose transporter 1 (glut1); (B) hexokinase 
(hk); (C) phosphoenolpyruvate carboxykinase (pepck).

(A)

(B)

(C)



86 Andri Hendriana et al. / Jurnal Akuakultur Indonesia 23 (1), 79–91 (2024)

no significant difference on other treatments 
(S052814, S102814, S102814, S052815, and 
S102815).  

Discussion 
This study indicates that the S053213 

treatment with 32% protein content and 0.05% 
cinnamaldehyde supplementation provides a 
better utilization in carbohydrates, impacting 
on the weight gain and specific growth rate 
in whiteleg shrimp. According to Hendriana 
et al., (2023), the supplementation of 0.05% 
cinnamaldehyde has roles in non-protein energy 
utilization improvement. A similar condition was 
also reported by Samocha et al. (2004), through 
the application of 32% protein  that obtained a 
better growth rate. Shrimps can utilize protein at 
30-60% for their growth (Yun et al., 2015). 

The results showed that the 0.10% 
cinnamaldehyde supplementation, higher than the 
optimal dose, with low protein content (28%) and 
protein-energy ratio of 14 and 15 could improve 
the protein retention at the S052815 and S102815 
and reduce the FCR value significantly, compared 
to the S003213 without cinnamaldehyde 
supplementation. Several factors that affect FCR 
are feed quality, fish or shrimp species in utilizing 
the feed, fish or shrimp size, and water quality 
during rearing. The amount of FCR determined 
the feed efficiency level. Moreover, total 
carbohydrates are considered to help regulate the 
body metabolism (Handajani, 2006). 

The results showed that shrimps can utilize 
the 32% protein more effectively by utilizing 
the non-protein energy from the diet due to 
cinnamaldehyde supplementation. According to 
Suprayudi et al. (2014), the utilization of non-
protein energy in the diet (protein-sparring effect) 
as energy source can be applied for growth. 
Carbohydrate assimilation efficiency depends 
on the enzymatic activity regulation, besides 
feed quality and quantity (Rosas et al., 2001). 
Positive roles of cinnamaldehyde in carbohydrate 
metabolism may be related to the positive 
effect of cinnamaldehyde in insulin activity, as 
reported in mice (Guo et al., 2017). Insulin has 
an important role in carbohydrate metabolism, 
starting from blood glucose balance, blood 
glucose transportation to body cells, and glucose 
utilization as an energy source. 

The crustacea hyperglycemic hormone 
(CHH), insulin-like peptides, and insulin-like 
growth factor (IGF-I and IGF-II) are hormone 
in crustacean hemolymph for glucose regulation. 

Cinnamaldehyde can also activate the insulin-
like growth factor (IGF-1) for regulating the 
protein and collagen biosynthesis in body tissue 
(Takasao et al., 2012). Increased carbohydrate 
utilization by shrimps is expected to reduce the 
protein content in the formulated diet. Growth 
performance and feed utilization efficiency 
significantly are significantly influenced by the 
carbohydrate level in feed. Previous studies 
reported that cinnamaldehyde had positive roles 
in elevating the SGR, PR, and PER values, 
and reducing the FCR value in striped catfish 
(Setiawati et al., 2016a; Tartila et al., 2021), Nile 
tilapia (Amer et al., 2018), grass carp (Zhou et 
al., 2021), and rainbow trout (Ravardshiri et al., 
2021). According to Enes et al. (2010), insulin 
has important roles in glucose homeostasis and 
postprandial glucose uptake induction through 
peripheral tissue. 

The plasma insulin secretion increase is 
correlated with the blood glucose level decrease 
(Anand et al., 2010).  Cinnamaldehyde can support 
the insulin content and reduces the glucose level 
by regulating the glucose utilization in muscle 
and reducing the gluconeogenesis process in 
the liver. The glycogen content increased along 
with the cinnamaldehyde supplementation, 
which indicates that available glucose is stored 
as glycogen (Zhang et al., 2020). Glycogen 
in crustacean hepatopancreas is an important 
precursor in chitin synthesis, glucose supply, and 
molting cycle (Cuzon et al., 2000). 

Glycogen can be utilized, when there no 
feed supply through glycogenolysis (Brosnan & 
Watford, 2015). Glycogen becomes a short-term 
reserved-energy that can be used rapidly, when 
the available energy is depleted (Setiawati et al., 
2015). When the glycogen is depleted, animals 
will mobilize and transform lipid and protein as 
glucose through gluconeogenesis to sustain the 
blood glucose level. Gluconeogenesis occurs in 
the shrimp hepatopancreas (Reyes-Ramos et al., 
2018; Berry et al., 2019). When gluconeogenesis 
no longer produces adequate glucose levels, the 
organism will experience a number of detrimental 
side effects, even death (Brosnan & Watford, 
2015). 

Feeding high carbohydrates can trigger 
hyperglycemia, glycogen deposition, increase 
lipid biosynthesis in liver tissue (Zhang et 
al., 2019; Su et al., 2021), and low growth to 
high mortality (Chen et al., 2022). Growth 
performance will have an impact on the quality of 
nutrients in the shrimp’s body. Cinnamaldehyde 
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plays a role in increasing the insulin receptor (IR), 
so the use of carbohydrates as an energy source 
can increase. In addition, cinnamaldehyde can 
also increase the fatty acid oxidation through 
Carnitine palmitoyl transferase-1a enzyme (Cpt-
1a) (Nikzamir et al., 2014; Zhu et al., 2017), 
characterized by a reduction in the lipogenesis 
process and a decreased fat levels in the body 
(Lopes et al., 2015). 

The carbohydrate metabolism genes in Pacific 
whiteleg shrimp were measured through gene 
expression parameters, including glut1, hk and 
pepck genes, which were examined under the 
fasting conditions for 24 hours. Several studies 
reported that increasing the carbohydrate content 
in feed could transform the gene expression, 
especially those related to carbohydrate 
metabolism (Rocha et al., 2015;  Chen et al., 
2017). High hk and pepck values indicate an 
increased glycolysis activity in muscle and liver, 
which was thought to occur because the hk gene 
has reached its maximum point to work in the 
conversion of glucose into glucose-6-phosphate. 
The expression of the hk gene is known to have 
a high ability to bind to glucose but its activity 
can be inhibited by high levels of glucose-6-
phosphate. 

The hk enzyme acts as a gene encoded key 
enzyme as a limiting factor in the glycolysis 
process (Enes et al., 2009). Meanwhile, increased 
pepck gene expression value indicates the 
gluconeogenesis process. The results of this study 
indicate that administration of cinnamaldehyde 
at 0.05% with 32% protein content in diet can 
increase the expression of genes related to 
carbohydrate metabolism as an energy source 
through the glycolysis process, which describes 
that carbohydrate metabolism occurs more 
actively. 

CONCLUSION

The Pacific whiteleg shrimp fed with 0.1% 
cinnamaldehyde and 28% protein with the C/P 
ratios of 14 and 15 provides a better retention 
protein and feed conversion ratio, than 32% protein 
without cinnamaldehyde dietary supplementation. 
A higher cinnamaldehyde inclusion beyond the 
optimal dose is recommended, when a higher C/P 
value in the formulated diet is applied.
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