Gut Microbiota Profile of Infants with Breastfeeding and Mixed Feeding Patterns

Tina Kusumaningrum¹, Wisnu T afroji¹, Septiani Madonna Gutom², Nina Dwi Putri², Cut Nurul Hafifah², Dodi Safari*¹

¹Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Cibinong, West Java, Indonesia
²Department of Child Health Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo, General Hospital, Jakarta, Indonesia

1. Introduction

More evidences which suggest that there is a relation between human health and the gut microbiota are becoming available (Valdes et al. 2018; Ding et al. 2019). Microbiota, a part of microbiome, refers to living microorganisms on the human body, which consists of bacteria, archaea, eukaryotes, and viruses (Marchesi and Ravel 2015; Berg et al. 2020). There is an extraordinary number of the microbiota, the same as the number of the cells in the human body, with the majority of them living in the gut (Sender et al. 2016).

The formation of the gut microbiota ecosystem is a complex but continuous process, affected by internal and external determinants (Chong et al. 2018). The gut microbiota is essential for developing the immune system, modulation of cell proliferation, and protection against pathogenic microorganisms (Jandhyala 2015). In recent years, the gut microbiota's effect on human diseases has been a popular topic in biomedical research society (Guinane and Cotter 2013). Several studies have reported that alteration of particular microbiota composition leads to several diseases such as gastrointestinal disorder, diabetes, obesity, and even cardiovascular disease (Wang et al. 2011; Tilg and Moschen 2014; Davis 2016). To prevent those diseases in later life, factors that affect the development of the gut microbiota since the beginning, such as diet during pregnancy, delivery mode, infant diet, environment, antibiotic use, and host genetic, need to be noted (Stewart et al. 2018).

This early gut microbiota development is crucial in shaping immune and metabolic functions that can have lifelong effects on health (Forno et al. 2008; Zeissig and Blumberg 2014; Tamburini et al. 2016). Indonesia prone to the risk of both communicable and non-communicable diseases. Based on the 2019 Health SGD Profile, the number of communicable diseases such as TB, HIV, Malaria, and Hepatitis remain high. The same applied to non-communicable diseases such as stunting, obesity, diabetes, and high blood pressure (WHO 2019). For that reason, studies on gut microbiota profile in Indonesian population are crucial as the results can provide important information for diseases prevention and treatment. Some of those studies use a conventional method
such as bacterial culture, while the others used next-generation sequencing (NGS) to get complete picture of the microbiota profile (Khine et al. 2020; Kamil et al. 2021; Surono et al. 2021). The gut microbiome formation in early life is a complex process that has long-term implications for a human's health (Davis et al. 2022). Feeding patterns significant influence, the health of children in later life. Recently, it has been reported that exclusively breastfeeding in the first six months after birth is associated with optimal cognitive and language development and well-balanced microbiota (Guo et al. 2023). In other studies, there were differences in the abundance of several OTUs in adolescence based on the type of feeding during the first six months of life (No infant formula versus infant formula [breastmilk + formula or only formula]) (Eshriqui et al. 2020). Our study aims to identify the gut microbiota profiles of infants living in Jakarta, Indonesia and determine whether there is a correlation with feeding patterns.

2. Materials and Methods

2.1. Specimen Collection

A total of 103 archived stool samples, collected at 4 and 6 months of ages from children who participated in the Breastfeeding Attitude and Volume (BRAVO) study started in July 2012 were used in this study. (Savitri et al. 2016) Mothers who participated in the BRAVO study were involved in children's stools collection obtained in the morning on the day of an immunization visit. In this study, 55 and 48 samples were collected from infants with breastfeeding and mixed feeding patterns. We define a mixed feeding pattern as an infant who receives mixed breast and formula feeding.

This study was approved by the Institutional Review Board of the Faculty of Medicine University of Indonesia/Cipto Mangunkusumo General Hospital (reference number: 260/UN2.F1/ETIK/III/2017). Written informed consent was obtained from the parent or guardian. The samples were transported in a cool bag to the study sites for aliquoting in 1.8 ml cryotubes. The processed samples were directly stored in a -20°C degree freezer for a maximum of 7 days before it is transferred to the central laboratory and stored at a -80°C degree temperature for further analysis.

2.2. DNA Extraction and Library Preparation

DNA extraction was conducted as manufacturer instruction (DNeasy Powersoil Kit, QIAGEN, USA). Bacterial DNA concentration obtained by extraction was measured by qPCR targeting 16S gene specific for bacterial detection. The use of 16S qPCR will specifically provide bacterial DNA concentration not total DNA obtained from extraction that is important further dilution before library preparation. The library was prepared by producing amplicon of V4 region of 16S gene tagged with specific indexed forward and reverse primer for each sample using conventional PCR (Caporaso et al. 2011). Bacterial DNA concentration of each sample used for library preparation was 5 ng/ul. All tagged amplicons were linearized to 75 ng for each sample followed by sample pooling in the same falcon tube. Pooled DNA was purified by using AMPure Beads (Beckman Coulter, USA). The purified pooled DNA was diluted to 4 nM before being processed for denaturation and dilution prior to injection to Cartridge. The concentration of diluted purified amplicon was measured using Qubit Fluorometric quantitation (Thermo Scientific-USA). A 4 nM pooled library was then used for pre-processing of dilution to 20 pM and denaturation prior to injection into MiSeq Illumina cartridge v2 for 500 cycles. (Illumina, n.d.) FastQ files were extracted from instrument for further data analysis.

2.3. Data Analysis

The gut microbiota profile, including alpha and beta diversity indexes, was analyzed using Quantitative Insights Into Microbial Ecology (QIIME) version 2 (Bolyen et al. 2019). We looked at the sequences' quality based on some randomly selected samples and then denoised the data. We used the DADA2 pipeline for detecting and correcting Illumina amplicon sequences. This process involved filtering phiX reads, chimeric sequences, and assigning taxonomic classification. The trimming parameters consist of --p-trim-left-f m / --p-trim-left-r m, which trims off the first m bases of each sequences, and --p-trunc-len-f n / --p-trunc-len-r n, which truncates each sequence at position n, to remove low quality regions of the sequences. Based on the quality plots above, we determined the trimming parameters for denoising the data. In this step we have to be careful while choosing the trimming parameters.
as we need the reads to overlap when joining both forward and reverse reads. From the demux-paired-end.qzv quality plots, the quality of initial bases from both forward reverse and reads are high, so we did not trim bases from the beginning of the reads. The quality dropped off at around position 198 bases, the position which we truncated the sequences in both reads. The taxonomic classification was based on the Greengenes database, and the output of this workflow was a classification of reads at several taxonomic levels (DeSantis et al. 2006). Downstream data analysis was conducted with phyloseq R package (McMurdie and Holmes 2013).

3. Results

DNA extracted from stool specimens sequenced by Illumina MiSeq resulting demultiplexed paired-end sequences with the number of reads of each sample ranging from 54 to 237,499 reads. Following the filtering process, we obtained a feature table and corresponding features sequences associated with each sample. The total feature sequences generated were 812 features and distributed in 103 samples with the minimum and maximum length 203 and 254 nucleotides, respectively. We excluded samples with a total sequence read lower than 2,000. Twelve phyla were observed and showed that Actinobacteria (45.03%), Firmicutes (35.76%), and Proteobacteria (14.74%) were dominant (Figure 1).

There is no difference in the microbiota pattern in the phylum level between the two feeding pattern groups. Actinobacteria, Firmicutes, and Proteobacteria were reported dominant from both groups (Figure 2). Alpha diversity measures, Observed, Shannon diversity, and Phylogenetic diversity showed no significant difference in the diversity of the bacteria abundance between breastfeeding and mixed feeding groups (p-value = 0.34; 0.28; and 0.27 respectively) (Figure 3).

In addition, for beta diversity, Jaccard distance, Bray-Curtis distance, Unweighted and Weighted UniFrac distances showed no difference among feeding pattern groups as samples from different feeding patterns spread evenly without forming groups based on the feeding pattern.

Beta diversity analysis by using PERMANOVA showed that there was no association between feeding patterns and there was no significantly different (p-value > 0.05) in the microbial community. Continuing the diversity measurement, we explored the taxonomic composition of the samples. The results showed that there was a domination of Bifidobacteriales (43.04%), Lactobacillales (28.39%), and Enterobacteriales (13.75%) which consist in more than three-quarters of the taxonomic abundance in the samples, followed by Clostridiales (4.30%), Bacillales (2.60%), Bacteriodales (2.24%), and Verrucomicrobialles (2.18%) (Figure 4).
Figure 2. Abundance of the phyla observed for each feeding pattern

Figure 3. Alpha diversity measures between two feeding pattern groups
Figure 4. Taxonomic composition of Actinobacteria, Firmicutes, and Proteobacteria phyla
4. Discussion

Studies of gut microbiota composition affected by dietary habit have been conducted in various region worldwide. Children from Europe that consumed a western diet rich in sugar, starch, animal protein, and poor in fibres resulting higher abundance of Bacteroides compare to children living in rural Africa, with agrarian diet, that had a higher abundance of Prevotella (De Filippo et al. 2010). Furthermore, study in India also resulted similar outcome, the gut microbiota of Indian tribes with carbohydrate diet enriched in carbohydrate-metabolizing bacteria from the family of Prevotellaceae (Dehingia et al. 2015). Consistent with those studies, gut microbiota characterization of BaAka hunter-gatherers and Bantu, two African groups living in Central Africa, have specific compositional structure of microbial that reflects their lifestyles (Gomez et al. 2016).

Exposure to breast milk has been reported to have a more significant influence in shaping the configuration and function of the gut microbiota. Breastfeeding provides a specific metabolic substrate for the microbiota (Neu and Rushing 2011; Guaraldi and Salvatori 2012). Some studies reported a difference in the bacteria pattern and abundance between different feeding modes (Harmsen et al. 2000; Fan et al. 2013). On the contrary, our study showed that feeding patterns are not associated with the difference in microbial community richness and evenness based on the alpha diversity index. Alpha diversity measures the number of different species in a sample and measures the abundance of the species. In addition, results from the measurement of the beta diversity index also showed that the association between feeding patterns and differences in the microbial community is not statistically significant. Beta diversity uses to compare the differences in microbial composition in one sample group compared to another (Wagner et al. 2018). In this study, more than 80% of the bacteria were Bifidobacterium, Lactobacillales, and Enterobacteriales, followed by Clostridiales, Verrumicrobialles, Bacillales, and Coriobacteriales. Bifidobacterium has been widely known to benefit human health such as prevention of colorectal cancer, treatment of diarrhea, and reduction in the symptom of inflammatory bowel disease (Venturi et al. 1999; Le Leu et al. 2010). Bifidobacterial has been reported to correlate with human milk oligosaccharides composition, and many studies reported that this bacterial was commonly found in the feces of infants who received breastmilk (Davis et al. 2016; Ho et al. 2018). Lactobacillales, as a part of lactic acid bacteria (LAB), are associated with intestinal infection control and lactose digestion improvement (Gilliland 1990). A study reported no significant difference in the abundance of Lactobacillus between breastfed and formula feed groups (Yang et al. 2019). Enterobacteriales has been reported to be associated with increased in vivo intestinal permeability in humans (Pedersen et al. 2018). Enterobacteriaceae, a family of Enterobacteriales has been reported to have lower abundance in less duration of breastfeeding group (Ho et al. 2018). In this study, we found cyanobacteria and chloroflexi in fecal samples. Other studies also found also rare Phyla (which had an average abundance of 0.01%) including Cyanobacteria, Deinococcus-Thermus, Chloroflexi, and Fusobacter among fecal samples from low birth weight (LBW) infants (Costello et al. 2013). Naturally, chloroflexi bacteria are found in the human oral microbiome, although in low levels (Morrison et al. 2023). Chlorophylaxis represents a low level (<1%) but consistent component of the human oral and skin microbiota and has also been detected in the gut of other mammals (Campbell et al. 2014). Our study did not show a difference in the gut microbiota pattern between the two feeding pattern groups. Recently, it was reported that at 3 months of age, Enterococcus was significantly lower in the cesarean section delivery with breast-fed group than in the formula-fed infants, although for infants delivered by vaginal delivery, the difference between feeding types (breast-fed versus formula-fed pattern) was not significant (Ma et al. 2022). Low diversity of gut microbiota early in life appears to be a hallmark of a healthy gut, if caused by breast-feeding, which is different from the theory in adults (Ma et al. 2022). Future research will be very important to investigate the feeding patterns and the mother diets during the breastfeeding period in the first six months on the diversity of microbiota and their relationship with non-communicable diseases in later life.

Acknowledgements

We dedicated this work to Dr. Nikmah Salamia Idris (Former PI for BRAVO study), who had passed away in 2020–may she rest in peace. We are grateful to the pregnant women for participating in the study, all the BRAVO team, and the staff of the Department
of Child Health, Dr. Cipto Mangunkusumo Hospital, Jakarta, Indonesia. This study was supported by a grant from the Indonesian Danone Institute Foundation. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the Indonesian Danone Institute Foundation.

References


