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1. Introduction
  

	 Reference genes for normalization is commonly used 
in gene expression at DNA and mRNA levels. There is 
a similar importance for a standard method for data 

ABSTRACT

In searching for new biomarkers, high throughput technique has been widely used 
by researchers, including for gene expression study. However, the reliability and 
accuracy of results from high throughput study critically depends on appropriate 
data management, including normalization methods. Data driven normalization 
has been introduced as a normalization method for high throughput gene 
expression study. Thus, this study was conducted to evaluate the performance 
of various data driven and reference genes normalization methods using a high 
throughput circulating microRNA expression dataset. A quantification cycle (Cq)  
dataset generated from a high throughput circulating microRNA study was used 
to test the normalization methods using HTqPCR package in R software. The 
normalized Cq generated from different methods were compared descriptively 
using box plot analysis and coefficient of variance. The box plot analysis showed 
that quantile normalization produced more homogenous Cq distribution, lesser 
outliers and reduced coefficient of variance as compared to other normalization 
methods in screening and validation phases. The overview on quantile normalized 
Cq showed consistency in its level of expression before and after 2-∆∆Cq calculation 
indicating the reliability of quantile normalized Cq. Quantile normalization 
is suggested to be used in high throughput miRNA expression study due to its 
performance in homogenizing the data, reduce outliers and coefficient of variance.
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normalization in miRNA expression study (Causin et 
al. 2019; Faraldi et al. 2019; Veryaskina et al. 2022). 
However, to date, reference genes for miRNAs that are 
replicable across studies have not been established, 
unlike in DNA and mRNA expression studies, in which 
reference genes such as GAPDH and ACTB genes are 
universally utilized as the reference genes (Veryaskina 



et al. 2022). Exogenous controls, which are miRNA genes 
from other organisms such as such as cel-miR-39-3p 
from Caenorhabditis elegans and ath-miR-159a from 
Arabidopsis thaliana, have been proposed as an option 
in the normalization technique in miRNA expression 
study (Kumar and Reddy 2016; Vigneron et al. 2016). 
However, the use of exogenous controls as reference 
genes was not recommended by Faraldi et al. (2019) and 
Dakterzada et al. (2020) as this controls may cause false 
interpretation of results. This is due to their purposive 
use for technical correction during the experiment but 
not for the other previously described intrinsic variables 
to which they are not biologically exposed. In contrast, 
endogenous miRNAs are more reflective on the cellular 
conditions being studied. 
	 As advanced technologies to screen from hundreds 
to thousands of genes per experiment are developed 
these days, the use of reference genes to normalize 
the raw expression data for such studies is impractical 
(Eisenberg and Levanon 2003, 2013). Various 
normalization methods have been developed with 
scientific and mathematical evidences to increase the 
accuracy of a normalization technique (Vandesompele 
et al. 2002; Mestdagh et al. 2009; Hicks et al. 2018). 
These types of normalization methods are known 
as data driven normalization as they utilized all the 
available data that are generated by the instrument 
and produce a reference or control value, such as 
quantile, mean or median expression (Bolstad et al. 
2003; Andersen et al. 2004; Deo et al. 2011; Hicks 
et al. 2018). Some data driven normalizations were 
suggested for high throughput gene expression study, 
such as rank invariant, mean expression and quantile 
normalizations (Liu et al. 2019).
	 Here, we present the comparison of some 
normalization methods in HTqPCR package for a 
quantitative polymerase chain reaction (qPCR) array, 
including data driven and reference genes methods. The 
normalization methods were tested on a qPCR dataset 
generated from a study on circulating miRNA expression 
in nasopharyngeal carcinoma (NPC) patients and control 
subjects. The study demonstrated the applicability 
of quantile normalization in high throughput gene 
expression study that consisted of screening phase that 
used representative number of samples and validation 
phase that use larger number of samples. The results 
show that for this dataset, quantile normalization 
performs the best in reducing variations between arrays 
and is better than the other data driven methods and 
reference genes.

2. Materials and Methods

2.1. Subject Recruitment
	 The protocol has been reviewed by IIUM Research 
Ethics Committee of International Islamic University 
Malaysia (IIUM) (IREC 457), Medical Research Ethic 
Committee of Ministry of Health Malaysia (NMRR-
15-1976-27156 (IIR)) and Human Research Ethics 
Committee of Universiti Sains Malaysia (USM/
JEPeM/16010032). Thirty six newly diagnosed and 
untreated NPC patients were recruited from three 
government and two university hospitals in Pahang 
and Kelantan states of Malaysia. Similar number of 
control subjects who have no history of NPC and blood 
relationship with the NPC patients in this study were 
recruited from the visitors of the similar hospitals and 
served as age-matched controls.

2.2. Circulating miRNA Extraction
	 Ten ml whole blood of the subjects were collected in 
ethylenediaminetetraacetic acid (EDTA) tube. The blood 
samples were centrifuged for 15 minutes at 1,200 x g at 
room temperature to obtain the plasma. Three hundred 
µL of the plasma were used for miRNA extraction using 
NucleoSpin® miRNA plasma kit (Macherey-Nagel, Düren, 
Germany) with modifications by Wozniak et al. (2015). 
The purity and RNA yield of the miRNA extracts were 
measured spectrophotometrically using NanoDrop™ 
1,000 (Thermo Fisher Scientific, Massachusetts, United 
States).

2.3. Screening Phase: Circulating miRNA 
Screening using Taqman® Low Density Array A 
+ B Cards
	 Ten plasma samples from NPC patients and eleven 
from controls were subjected to the circulating miRNA 
screening. Reverse transcription (RT) was performed 
using Megaplex™ Reverse Transcription kit (Applied 
Biosystems, California, United States) according to the 
manufacture’s protocol. Fixed volume rather than equal 
quantity of miRNAs was used as starting material that 
consisted of one to 350 ng total RNA. Preamplification 
step was used after RT step using Megaplex™ PreAmp 
kit (Applied Biosystems, California, United States) 
according to the manufacture’s protocol. Both RT and 
preamplification steps were performed using Veriti™ 
96-Well Thermal Cycler (Applied Biosystems, California, 
United States). The preamplification products were 
inserted into Taqman® Low Density Array (TLDA) version 
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2.6. Measures of Performance
	 The normalization methods offered by the HTqPCR 
package were quantile normalization, rank invariant 
normalization, delta Cq normalization and geometric 
mean normalization (Dvinge and Bertone 2009). The 
controls that were available in TLDA version 3.0 for 
delta Cq normalization purpose were U6 snRNA, RNU44 
and RNU48 for endogenous reference genes and ath-
miR-159a for exogenous reference gene. Besides, the 
study also used all the miRNAs available in the card A 
and B to search for any potential candidate reference 
genes by calculating summarized stability score 
(SSS), as recommended by Marabita et al. (2016). This 
formula summarizes the stability score from geNorm, 
NormFinder and coefficient of variance (CV), where 
the lower score from each of these algorithms shows 
more stable candidate reference genes. The SSS value 
was used to rank the miRNAs from the most stable 
miRNAs, indicated by the lowest SSS value, to least 
stable miRNAs, indicated by the highest SSS value.
	 The selection of normalization method for this 
study was based on box plot analysis to investigate the 
distribution patterns of Cq values for each sample and 
coefficient of variation (CV) to investigate the dispersion 
of Cq values for individual miRNAs, based on Sysi-Aho 
et al. (2007) and Deo et al. (2011). The criteria to select 
the best normalization method were determined by 
identifying the method that produced homogenous 
normalized Cq distribution, less Cq outliers and lower 
CV after the normalization as compared to raw Cq. The 
homogenous normalized Cq distribution and lower 
CV were important criteria to be considered as they 
indicated the good performance of a normalization 
method in adjusting the experimentally induced 
variations. The results of both analyses were generated 
using the HTqPCR package in RStudio software.

3. Results

3.1. Screening Phase: Circulating miRNA 
Screening using Taqman® Low Density Array A 
+ B Cards
	 The exclusion of haemolysis-sensitive miRNAs from 
the raw Cq data had selected 352 and 378 miRNAs 
from 384 miRNAs in card A and card B, respectively. 
Next, the removal of the miRNAs with undetermined 
and unreliable Cq in more than 80% of the samples 
by HTqPCR package in RStudio software resulted in 
a list of remaining 182 and 122 miRNAs from card A 

3.0 card A and B for qPCR reaction. TLDA card A and B 
are qPCR array that consist of more than 740 miRNAs 
that consistent with Sanger miRBase version 20. The 
qPCR reaction was performed using QuantStudio™ 
12K Flex Real-Time PCR System (Applied Biosystems, 
California, United States) with setting of initiation 
stage for 10 minutes at 95°C, followed by 40 cycles 
amplification stage for 15 seconds at 95°C and 1 minute 
at 60°C. Once the qPCR completed, the qPCR data 
were exported to ExpressionSuite software (Applied 
Biosystems, California, United States) for calculation 
of Cq using auto-threshold and auto-baseline settings.

2.4. Validation Phase: Circulating miRNA 
Expression Validation using 96.96 Dynamic 
Array™ Integrated Fluidic Circuit Chip
	 The 96.96 Dynamic Array™ Integrated Fluidic Circuit 
(IFC) chips (Fluidigm, California, United States) with 
Taqman® miRNA PCR assay were used to validate the 
differential expression of selected miRNAs, based on 
method by Tan and Tan (2017). The qPCR data was 
exported to Fluidigm Real-Time PCR Analysis software 
(Fluidigm, California, United States) for calculation of 
Cq using auto-threshold and auto-baseline settings.

2.5. Pre-processing Data
	 The first pre-processing step in this study was 
to exclude the haemolysis-sensitive miRNAs from 
further analysis to increase reliability and prevent 
underestimation of result. This step was performed 
by removing the miRNAs that have been reported to 
be affected by haemolysis from the miRNA list in the 
exported .xls file (Kirschner et al. 2013; MacLellan 2014; 
Shkurnikov et al. 2016; Pizzamiglio et al. 2017). Then, the 
undetermined and Cq values of more than 35 have been 
replaced with Cq of 36, instead of Cq of 40, to minimize 
statistical confounding by high quantification cycle 
values (de Ronde et al. 2016; Gevaert et al. 2018). Further 
pre-processing steps were performed using the HTqPCR 
package from Bioconductor in RStudio software (Dvinge 
and Bertone 2009). The low expression miRNAs that 
caused analytical nuisance and confound the statistical 
analysis were removed using the RStudio software. As 
recommended by Gevaert et al. (2018), the miRNAs with 
non-informative Cq, which was Cq of 36, in more than 
80% of samples were excluded from the study as they can 
confound the statistical analysis by increasing noise. So, 
for this study, the miRNAs with Cq of 36 in more than 17 
out of 21 samples were excluded from further analysis.
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and card B, respectively, as reliable miRNAs for further 
downstream analyses. In total, 304 miRNAs were 
detected in screening phase for further pre-processing.

	 The quality assessment for each normalization 
methods in HTqPCR for card A and B are presented in 
Figure 1 and 2, respectively. RNU44 and RNU48 cannot 
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Figure 1. Cq and CV box plots for normalization methods in HTqPCR package for card A. (A) Cq and CV box plots for raw 
Cq. (B) Cq and CV box plots for quantile normalization. (C) Cq and CV box plots for rank invariant normalization. 
(D) Cq and CV box plots for geometric mean. (E) Cq and CV box plots for U6 snRNA normalization. (F) Cq and CV 
box plots for ath-miR-159a normalization
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be assessed for their normalization performance as 
these reference genes have been removed from the 
data set during the second filtration step. The failure 
of RNU44 and RNU48 in passing the pre-set criteria 
in the pre-processing filtration indicated that these 
small-nucleolar RNAs are not suitable reference genes 
for circulating miRNAs in this study.  Figure 1 shows that 
quantile normalization produced the best normalized 
Cq distribution in card A for its more homogenous mean 
Cq across samples and lesser Cq outliers as compared 
to the other methods. The quantile normalized Cq 
also showed a decrease in CV compared to the raw 
Cq. Furthermore, no obvious difference in box plots 
alignment has been observed in quantile normalized 
Cq, indicating a well-conducted experiment. Even 
though rank invariant normalized Cq had about the 
same reduction of CV as quantile normalized Cq, rank 
invariant normalized Cq produced less homogenous 
Cq distribution and had more outliers as compared to 
quantile normalized Cq. Geometric mean normalization 
produced less homogenous Cq distribution and no 
obvious reduction in CV was observed. Meanwhile, the 
normalization method using reference genes U6 snRNA 
and ath-miR-159a, also produced less homogenous Cq 
distribution after normalization. Although the CVs were 
reduced visually in the normalized Cq of both reference 
genes, the extreme outliers can be observed in their 
CV box plots. This indicated the inappropriateness of 
using reference genes as the normalizers in the high 
throughput study. Considering the overall assessment 
results on the normalization methods, the quantile 

normalization appeared to be the best method for 
normalizing the raw Cq data for card A of this study.
	 Quantile normalization was still the best method 
for normalization for card B, as illustrated in Figure 2, 
where it produced the best homogenous normalized 
Cq distribution and less Cq outliers as compared to 
the other methods. The reduction in CV of quantile 
normalized Cq was just about the same as rank invariant 
normalized Cq. However, the rank invariant normalized 
Cq had less homogenous Cq distribution as compared 
to quantile normalized Cq, which made quantile 
normalization better than rank invariant normalization. 
For the remaining normalization methods, namely the 
geometric mean, reference gene U6 snRNA and reference 
gene ath-miR-159a, the Cq distribution produced after 
normalization were apparently lesser homogenous and 
the CV were reduced lesser as compared to quantile 
normalization. Therefore, for both card A and B, quantile 
normalization showed the best normalization method 
for the screening phase of this study as it produces 
homogenous normalized Cq distribution across the 
samples, less Cq outliers and more reduced CV as 
compared to the other methods.
	 The screening of potential reference genes among 
candidate miRNAs from card A and B, based on the 
ranking by SSS is presented in Table 1. The ranking 
by SSS showed that hsa-miR-30b, hsa-miR-30c, hsa-
miR-374, hsa-miR-301 and hsa-let-7d were among the 
five miRNAs with lowest SSS value. Thus, these miRNAs 
were selected as candidate reference genes to be tested 
in the validation phase.

Table 1. Ranking by SSS based on scores of candidate reference genes from geNorm, NormFinder and CV
Candidate reference genes geNorm NormFinder CV SSS
hsa-miR-30b
hsa-miR-30c
hsa-miR-374
hsa-miR-301
hsa-let-7d
hsa-miR-24
hsa-miR-331
hsa-miR-223#
hsa-miR-29a
hsa-miR-10a
hsa-miR-214
hsa-miR-323-3p
hsa-miR-642
hsa-miR-1825

0.943
0.994
1.139
1.239
1.278
1.528
1.561
1.642
1.756
2.882
2.660
3.151
3.068
3.393

0.151
0.150
0.163
0.161
0.175
0.280
0.143
0.205
0.154
0.182
0.182
0.195
0.188
0.207

0.271
0.269
0.293
0.252
0.254
0.327
0.277
0.207
0.282
0.144
0.155
0.140
0.148
0.126

0.993
1.041
1.187
1.275
1.315
1.587
1.592
1.668
1.785
2.891
2.671
3.160
3.077
3.402

CV: coefficient of variance
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visualized in the box plot as compared to other 
methods. The CV also was decreased in quantile 
normalized Cq as compared to raw Cq and no outliers 
were visualized. Meanwhile, the other normalization 
methods produced the less homogenous 
distribution of normalized Cq compared to quantile 
normalization. The CV for the other normalization 
methods also were either increased as compared to 
raw Cq, which were reference gene ath-miR-159a 
and geometric mean, or producing outliers, which 
were reference genes hsa-miR-30b and hsa-miR-
30c. Therefore, quantile normalization appeared to 
be the best normalization method for Cq data in the 
validation phase of this study due to its homogenous 
Cq distribution and lower CV as compared to raw Cq 
data.

4. Discussion

	 Normalization of Cq data is a crucial part in a 
qPCR analysis as it is among the steps in data pre-
processing to remove experimentally induced 
variation and differentiating true biological changes 
(Steinhoff et al. 2006; Meyer et al. 2010). Thus, 
selection of unreliable normalization method could 
affect the downstream analyses and could eventually 
produce misleading conclusions (Dheda et al. 2005; 
Pradervand et al. 2009). Four normalization methods 
were offered in HTqPCR package, namely delta Cq 
normalization, quantile normalization, rank invariant 
normalization, and geometric mean normalization, 
where their performance was evaluated on suitability 
for Cq data of this study (Dvinge and Bertone 2009).
	 Delta Cq normalization is the common technique in 
normalizing raw Cq data using one or more reference 
genes that expressed stably across the samples and 
tissues (Vandesompele et al. 2002; Peltier et al. 2008; 

3.2. Validation Phase: Circulating miRNA 
Expression Validation Screening using 96.96 
Dynamic Array™ Integrated Fluidic Circuit Chip
	 The pre-processing of data for validation phase 
was conducted in the similar way as the screening 
phase except for exclusion of haemolysis-sensitive 
miRNAs as the haemolysis-sensitive miRNAs have 
already been excluded in the screening phase. The 
second filtration, which excluded the miRNAs with 
undetermined and unreliable Cq in more than 80% 
of the samples, resulted in no exclusion of miRNAs, 
indicating the high percentage of acceptable Cq of 
miRNAs in the validation phase for good statistical 
analysis.
	 The stability of the five candidate reference 
genes that were selected from screening Cq data 
was validated first to ensure the consistency of their 
stability. The calculation of SSS for these candidate 
reference genes showed that hsa-miR-30b and hsa-
miR-30c were consistent as the top two most stable 
candidate reference genes in plasma, as shown in 
Table 2. Thus, these two miRNAs was selected as 
reference genes for normalization on the validation 
Cq data.
	 The result on evaluation of normalization methods 
for Cq data in validation phase is illustrated in Figure 
3. In validation phase, rank invariant normalization 
cannot be performed by the HTqPCR package due 
to inability of the methods to detect the minimum 
number of unique miRNAs required for the rank 
invariant normalization in the validation data. This 
may due to reduction in number of miRNAs that 
remained in the validation phase. The evaluation 
showed that quantile normalization was still the best 
normalization method for this study as compared 
to other normalization methods as it produced 
homogenous Cq distribution and no outliers were 

Table 2. Scores of validated five candidate reference genes

Candidate reference genes geNorm
Plasma

NormFinder CV SSS
hsa-miR-30b
hsa-miR-30c
hsa-miR-374
hsa-miR-301
hsa-let-7d

0.38
0.38
0.623
0.893
0.704

0.095
0.055
0.08
0.083
0.119

0.133
0.112
0.096
0.107
0.126

0.414
0.399
0.635
0.903
0.725

CV: coefficient of variance, SSS: summarized stability score
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Meyer et al. 2010). In this study, three endogenous 
controls, namely U6 snRNA, RNU44 and RNU48, and 
one exogenous control, namely ath-miR-159a, were 
supplemented in TLDA cards as potential reference 
genes. RNU44 and RNU48 were excluded at early 
data pre-processing in the screening phase due to 
the presence of more than 80% of undetermined Cq 
in their data, indicating the unsuitability of these 
small RNAs for this study. The unsuitability of RNU44 
and RNU48 as reference genes for circulating miRNAs 
has been demonstrated in previous studies. A study 
by Sanders et al. (2012) showed that RNU44 was 
expressed at a very low level and even undetected 
in some samples, while RNU48 was ranked among 
the least stable reference gene. Another study by 
McDermott et al. (2013) demonstrated that RNU44 
and RNU48 have the least stable expression in their 
study, where they also used TLDA card to quantify 
the expression of circulating miRNAs. A recent study 
by Mompeón et al. (2020) also showed the variability 
expression of RNU44 and RNU48 in their plasma and 
serum samples, which indicated the unsuitability of 
these RNAs as reference genes for circulating miRNA 
expression analysis.
	 Meanwhile, the quality assessment on U6 snRNA 
and ath-miR-159a as reference genes showed that 
these small RNAs produced less homogenous Cq 
distribution as compared to raw Cq, as illustrated in 
Figure 1E, Figure 1F, Figure 2E and Figure 2F. Their 
CV also did not show improvement as compared to 
raw Cq, apart from producing some extreme outliers. 
Thus, these endogenous and exogenous controls 
demonstrated that they were not suitable to be 
used in this study. The use of exogenous controls as 
reference genes has been recommended by Vigneron 
et al. (2016). However, the current study showed that 
the unsuitability of exogeneous control as reference 
gene, namely ath-miR-159a. This is consistent with a 
result reported by Faraldi et al. (2019) who showed 
the less stable and unreliable of exogenous controls as 
reference genes that might lead to misinterpretation 
of results. Furthermore, Faraldi et al. (2019) and 
Dakterzada et al. (2020) did not agree on the use of 
exogenous controls as reference genes because this 
controls are used mainly for technical correction 
of variability during miRNA extraction and reverse 
transcription. So, the use of exogenous controls as 
reference genes may predispose risk to misleading 
interpretation of results.

	 Instead of the recommended candidate reference 
genes that were supplemented in TLDA cards, the 
other miRNAs in the cards were also used to search 
for other potential reference genes. Disagreement 
on the ranking of stable miRNAs was found between 
the results produced by geNorm, NormFinder and 
CV. For instance, hsa-miR-374 was the top five most 
stable candidate reference gene in geNorm but not 
in NormFinder and CV, as shown in Table 1. This 
may be due to different algorithms used for each 
method. geNorm calculates the pairwise variation of 
a miRNA over other candidates across the samples 
as the standard deviation (SD) of log-transformed 
expression ratios. Then, the mean variation of that 
miRNA with other candidates has been obtained as 
M-value, which is the stability value used in geNorm. 
NormFinder calculates the stability value based 
on minimal inter- and intra-group variation as the 
log-transformed expression ratios. The inter- and 
intra-group variation are estimated by considering 
the number of miRNAs that present in the samples 
and the random variation caused by biological 
and experimental factors. The result is reported as 
estimated systematic error, or rho value. Meanwhile, 
CV compares the variability of a miRNA across the 
samples after considering the total miRNA recovery 
for each sample. It is calculated by dividing the SD 
of a miRNA with its corresponding mean (Marabita 
et al. 2016). Similarly, Marabita et al. (2016) also 
reported the different rankings obtained from 
different algorithms in their case study analysis, 
which is consistent with the results in this study. 
Therefore, they proposed to summarize the results 
of different algorithms by measuring the distance 
from the origin in n-dimensional space, known as 
SSS. The SSS suggests a new ranking that summarize 
the results from different algorithms. In this study, 
two candidate miRNAs showed consistent results 
between the screening and validation phases based 
on ranking by SSS, namely the hsa-miR-30b and hsa-
miR-30c. However, the evaluation on these miRNAs 
showed that both did not produce homogenous 
distribution of Cq, producing outliers and no obvious 
improvement of CV, as illustrated in Figure 3C. This 
indicates unsuitability of hsa-miR-30b and hsa-miR-
30c as reference genes in this study.
	 The box plot analysis showed that quantile 
normalization was the best normalization method in 
this study due to the homogenous distribution and 
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decreased CV of its normalized Cq as compared to 
other methods. Principally, quantile normalization 
uniformizes the statistical distribution of Cq 
values across samples and assumes any differences 
observed in the distribution are induced by the 
technical variation (Bolstad et al. 2003; Dvinge 
and Bertone 2009). In quantile normalization, the 
observed distributions are forced to be the same to 
achieve normalization and the average distribution 
(average of each quantile across samples) is used as 
the reference (Hicks et al. 2018). These are shown in 
Figure 1B, Figure 2B and Figure 3B, where the quantile 
normalization corrects the distribution of raw Cq 
data to a uniform distribution across the samples. 
It also reduces the variance in gene expression data 
but with tolerable bias-variance trade-off, which 
consistent with the result of CV box plots of quantile 
normalized Cq in Figure 1B, Figure 2B and Figure 3B 
(Bolstad et al. 2003; Qiu et al. 2014). The recognition 
of quantile normalization as the best data driven 
normalizer as compared to other normalization 
methods was revealed in previous studies (Deo et al. 
2011; Wozniak et al. 2015; Chekka et al. 2022).
	 The results from this study show that the 
simultaneous evaluation of several normalization 
methods is crucial in high throughput miRNA gene 
expression study to find the optimal normalizer for 
the data set and to prevent misleading results. For 
the data set in this study, quantile normalization is 
the recommended normalizer due to its performance 
in removing variation across samples with the 
same background, indicated by its homogenous 
distribution and reduced CV of normalized Cq.
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