Cloning and Extracellular Expression of Glargine in *Pichia pastoris*

Dudi Hardianto1*, Efrida Martius1, Tina Rostinawati2, Anna Safarrida3, Juwartinida Ida Royani4, Fahrozieha Assyifa5, Dihan Laziba5

1Research Center for Vaccine and Drugs, Research Organization for Health, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia
2Department of Pharmaceutical Biology, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Sumedang 45363, Indonesia
3Research Center for Genetic Engineering, Research Organization for Life Sciences and Environment, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia
4Research Center for Horticultural and Estate Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, Cibinong, Bogor 16911, Indonesia
5Biotechnology Laboratory, Directorate of Laboratory Management, Research Facilities, and Science and Technology Park, National Research and Innovation Agency, Setu, South Tangerang 15345, Indonesia

1. Introduction

Diabetes mellitus (DM) is a chronic metabolic disease characterized by high glucose levels in the blood and glucose intolerance due to insulin deficiency, insulin resistance, or both (Mane et al. 2012; Baynest 2015; Rachdaoui 2020; Wszola et al. 2021). Insulin is a hormone produced by pancreatic cells to control blood glucose by regulating the use and storage of glucose (Ahmad 2014; Gupta et al. 2015; Rahman et al. 2021). The leading cause of insulin deficiency is damage to pancreatic cells, which function to produce insulin (Gururaj Setty et al. 2016; Liu et al. 2018). In addition, insulin resistance also causes DM. Insulin resistance reduces the ability of insulin to stimulate glucose utilization or decreases the response of target cells, such as muscles, tissues, and the liver, to physiological insulin levels (Basukala et al. 2018; Gotham et al. 2018; Sorli 2014).

Two types of insulin for treating DM are human insulin and insulin analogues. Insulin analogues are minor modifications of human insulin through genetic engineering to alter the pharmacokinetics, absorption profile, and duration of action of insulin. Insulin analogues consist of fast-acting insulin analogues (aspart, lispro and glulisine) and long-acting insulin analogues (glargine, detemir, and degludec). Glargine, as long-acting insulin analogue has two peptide chains containing 53 amino acids. Chain A consists of 21 amino acids, and chain B consists of 32 amino acids. Glargine modifies human insulin by extending the C terminus of the B chain by adding two arginine residues after the B30 position and
replacing asparagine with glycine at the A21 position (Sleigh 1998; Tibaldi 2008; Hilgenfeld et al. 2014; Gururaj Setty et al. 2016; Shen et al. 2019; Hirsch et al. 2020). Amino acid modification of glargine forms amorphous precipitates in the subcutaneous tissue at neutral pH, inhibiting absorption and prolonging action duration. Glargine has an onset of 90 minutes and a long working time of up to 24 hours. Hence, glargine is more effective because patients with diabetes receive glargine injections only once daily (Sleigh 1998; Tibaldi 2008; Hilgenfeld et al. 2014; Gururaj Setty et al. 2016; Shen et al. 2019; Hirsch et al. 2020). In the United States, from 2016 to 2020, the percentage of glargine use consistently accounted for about half (47.1%-53.0%) of total medications. In 2020, glargine accounted for 52.6% of the 4.9 million total (Sarkar et al. 2021).

Production of human insulin and insulin analogues can use Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, and Hansenola polymorpha as expression systems (Baeshen et al. 2014; Sandow et al. 2015; Hwang et al. 2016; Stubbs et al. 2017; Riggs 2021; Sekaringtyas et al. 2021). However, Escherichia coli is preferred because it produces large amounts of insulin with low production costs (Allen et al. 2019). Like Escherichia coli, Pichia pastoris grows fast, is easy to handle and manipulate genetically. This yeast produces fully folded recombinant proteins, their glycosylation of recombinant proteins is almost the same as mammalian cells, and they produce active proteins (Gurramkonda et al. 2010; Baeshen et al. 2014; Baghban et al. 2019). Another reason is that Pichia pastoris can produce large amounts of recombinant protein and be secreted, thus facilitating purification (Gurramkonda et al. 2010; Baeshen et al. 2014; Baghban et al. 2019). This study aims to produce glargine using Pichia pastoris as an expression system capable of producing glargine extracellularly, thus simplifying the purification process.

2. Materials and Methods

2.1. Plasmid and Strain

The glargine gene (U9162FE120-2) codon-optimized for Pichia pastoris was synthesized by GenScript and inserted into the pPICZαA plasmid (Figure 1). Pichia pastoris was from Invitrogen Co., Ltd.

![Gene Cloning in pPICZαA-G Plasmid](Image)

Figure 1. Map of pPICZαA-G plasmid
2.2. Isolation and Characterization of pPICZα-G plasmid

Escherichia coli culture was grown overnight in Luria Bertani medium. 1.5 ml was taken, put into a 1.5 ml tube, and centrifuged (14,000-16,000 g, 1 minute, room temperature). The pellet was suspended in 200 µL PD1 Buffer, added 200 µL PD2 Buffer, and stirred slowly by inverting the tube ten times. The suspension was incubated (room temperature, 2 minutes), added 300 µL PD3 Buffer, was digested immediately by inverting the tube ten times, and centrifuged (14,000-16,000 g, 3 minutes, room temperature). The supernatant was put into the PDH column in a 2 ml tube and centrifuged (14,000-16,000 g, 1 minute, room temperature). The isolated pPICZα-A-G was digested by SacI, confirmed by electrophoresis (2% agarose gel with 0.5X TAE buffer stained in 1 µL SYBR Green at 50 V for 50 minutes). The purified pPICZα-A-G plasmids were run on 2% agarose gel with 0.5X TAE buffer stained in 1 µL SYBR Green at 50 V for 50 minutes. The purified pPICZα-A-G plasmid was sequenced to confirm the presence of the synthetic glargine gene in pPICZα-A-G plasmid. The PCR product of *Pichia pastoris* genome was examined by DNA sequencing using primer specific for glargine gene 5’F (5’-ACCAACATTTGTGTGTGGTTCTCA-3’) to confirm the presence of the synthetic glargine gene in pPICZα-A-G plasmid. R AOX1 primer (5’-GACTGTTTCCAATTGACAGC-3’) (Anonimous 2010) was also used to validate the presence of the synthetic glargine gene in pPICZα-A-G plasmid. The sequencing reaction contained 8.0. µl reaction mix, 2 µl purified PCR product, 1 µl AOX1 primer, and 9 µl deionized water. The above mixture is loaded into the PCR machine for thermal cycling. The conditions of thermal cycling were 96°C (1 minute), 25 cycles at 96°C (10 seconds), 50°C (5 seconds) and 60°C (4 minutes). The resulting thermal cycling of sample was purified, loaded, sequenced with an Applied Biosystems machine, and analyzed.

2.3. Electroporation of pPICZα-A-G plasmid into *Pichia pastoris*

Overnight *Pichia pastoris* 0.5 ml was grown in 100 ml of YPD till OD$_{600}$ = 1.3 – 1.5. The culture was centrifuged (1,500 g, 5 minutes, 4°C). Pellets were resuspended by 500 ml sterile water (4°C) and centrifuged (1,500 g, 5 minutes, 4°C). Pellets were resuspended by 250 ml sterile water (4°C) and centrifuged (1,500 g, 5 minutes, 4°C). Pellets were resuspended by 1.5 ml 1 M sorbitol (4°C). 80 µl of the suspension was added to 5 µg of linearized pPICZα-A-G plasmid, placed in a sterile cuvette, incubated (94°C, 5 minutes), and pulsed by an electroporator (1,500 V and 5 ms). The suspension in the cuvette was added 1 ml of 1 M sorbitol (4°C). The suspension was transferred by a sterile 15-ml tube and incubated at 30°C without shaking for 1-2 hours. 50 µl of suspension were grown, labeled YPDS medium with 100 µg/ml Zeocin (selected medium), incubated for 3–10 days at 30°C. 10–20 colonies were selected and grown on fresh YPD or YPDS medium with 100 µg/ml Zeocin.

2.4. Characterization of recombinant *Pichia pastoris*

Recombinant *Pichia pastoris* was characterized by PCR and DNA sequencing. PCR amplified the glargine gene in the genome of *Pichia pastoris*. The PCR reaction mixture included the selected genome of recombinant *Pichia pastoris*, 12.5 µl GoTag Green Master Mix, 2 µl forward primer 10 µM, 2 µl reverse primer 10 µM, 1 µl DNA template 50 ng/µl, and 7.5 µl PCR-grade water. The PCR cycling: 2 minutes of denaturation at 95°C, 30 cycles of denaturation at 95°C for 30 seconds, 30 seconds of annealing at 52°C, and 30 seconds of extension at 72°C. A final extension step at 72°C for 5 minutes. PCR products were run on 2% agarose gel with 0.5X TAE buffer stained in 1 µl SYBR Green at 50 V for 50 minutes and sequenced to confirm glargine gene was integrated into the genome of *Pichia pastoris*. The DNA sequence of the synthetic glargine gene from Genscript: TTCGTTAACCA-A TTGTGTGGTTCTCATTTGGTTGAAGCATTGTATTTGGTT 80 µl of the suspension was added to 5 µg of linearized pPICZα-A-G plasmid, placed in a sterile cuvette, incubated (94°C, 5 minutes), and pulsed by an electroporator (1,500 V and 5 ms). The suspension in the cuvette was added 1 ml of 1 M sorbitol (4°C). The suspension was transferred by a sterile 15-ml tube and incubated at 30°C without shaking for 1-2 hours. 50 µl of suspension were grown, labeled YPDS medium with 100 µg/ml Zeocin (selected medium), incubated for 3–10 days at 30°C. 10–20 colonies were selected and grown on fresh YPD or YPDS medium with 100 µg/ml Zeocin.
in the recombinant *Pichia pastoris* genome. Primer R (5’-TGTTCAACGAATACCTCTCTTGATG-3’) was also used to validate the presence of the partial synthetic glargine gene in recombinant *Pichia pastoris*. The DNA sequencing procedure to detect the glargine gene in the genome is the same as procedure 2.2.

2.5. Production of Glargine

Eight colonies of recombinant *Pichia pastoris* were inoculated in each Erlenmeyer containing 10 ml BMGY at 30°C in an incubator shaker (250 rpm) until OD$_{600}$ = 2-6. The cultures of recombinant *Pichia pastoris* were centrifuged (1,500–3,000 g, 5 minutes, room temperature). Pellets (OD$_{600}$ > 1.0) were resuspended in BMMY medium and grew (30°C) in a shaker incubator (250 rpm) overnight. The concentration of 0.5% methanol is maintained by adding methanol every 24 hours. After 72 hours of incubation, the cultures were harvested, centrifuged (1,500–3,000 g, 5 minutes, room temperature) and glargine in the supernatant was characterized by SDS-PAGE gel electrophoresis. The supernatant was analyzed by SDS-PAGE 15% polyacrylamide gel-electrophoresis and tricine buffer system (Haider et al. 2012). 20 µL of sample was mixed with 20 µL of sample buffer and heated for 10 minutes. 20 µL of the above mixture was loaded into the gel and electrophoresed. Electrophoresis results were stained with Coomassie blue.

3. Results

Result of pPICZαA-G plasmid isolation was electrophoresed in 1% agarose gel. The size of the pPICZαA-G plasmid was about 3800 bp (Figure 2), confirming the existence of glargine gene in pPICZαA-G plasmid by sequencing. First sequencing used F AOX1 primer (5’-GACTGGTCCAATTGACAGC-3’) and second sequencing used R AOX1 primer (5’-GCAAATGGCATTCTGACATC-3’). The sequencing results with F AOX1 primer and R AOX1 primer were combined and aligned with optimized glargine gene. The DNA sequencing showed that DNA sequence from pPICZαA-G plasmid was 100% similar to the DNA sequence of synthetized glargine gene (Figure 3).

The recombinant *Pichia pastoris* grew on selected medium after 3 days of incubation but *Pichia pastoris* without pPICZαA-G plasmid did not grow on selected medium (Figure 4). 20 colonies of recombinant *Pichia pastoris* were selected and grew on selected medium agar (Figure 5). In this experiment, 20 colonies were randomly selected from tens to hundreds of transformed *Pichia pastoris* colonies in a petri dish for experimental reproducibility and representativeness of the sample for statistical significance.

The PCR examination of the recombinant *Pichia pastoris* using specific primers for the synthetic glargine gene resulted in the amplification of a single band, confirming the successful integration of the pPICZαA-G plasmid containing the synthetic glargine gene into *Pichia pastoris* genome. The PCR validates that the recombinant strain contains the desired gene, with the PCR product containing the desired gene being 102 base pairs long (Figure 6). DNA sequencing results show a complete match (100% sequence identity) between the PCR product and the synthetic glargine gene sequence (Figure 7).

Pichia pastoris produced extracellular glargine in broth of fermentation medium. The size of glargine was about 10 KDa (Figure 8).
Figure 3. The sequence alignment from synthetized glargine gene (A) and PCR product of pPICZαA-G plasmid (B)
Figure 4. (A) The recombinant *Pichia pastoris*, (B) negative control plate (*Pichia pastoris* without plasmid)

Figure 5. The recombinant *Pichia pastoris* on the selected medium

Figure 6. Agarose electrophoresis of PCR product. M. 100 bp Ladder (SMOBIO DM2100, Taiwan); 1. Partial of glargine gene from pPICZα-A-G plasmid (Positive Control); 2. Partial of glargine gene from genome of *Pichia pastoris*
Zeocin is a bleomycin or phleomycin class of antibiotics isolated from Streptomyces verticillus (Anonymous 2010). The mechanism of action of zeocin is to bind and cut DNA so that the cell dies. Zeocin is toxic to bacteria, fungi (including yeast), plants and mammalian cells. The pPICZA-G plasmid has a resistance gene to zeocin (Figure 1). The zeocin resistance gene (shble gene) produces a protein that binds to zeocin so that zeocin is inactive (Gatignol et al. 1988; Trastoy et al. 2005). Recombinant Pichia pastoris contains the plasmid pPICZA-G, so it can grow on YPD selection media containing zeocin (Figures 4 and 5).

Recombinant Pichia pastoris were examined for the presence of glargine gene by PCR. The genome of recombinant Pichia pastoris has the same glargine gene as the plasmid pPICZA-G (Figure 6). The DNA sequencing of the PCR product from the recombinant Pichia pastoris genome was 100% identical to the synthesized glargine gene (Figure 7).

Recombinant Pichia pastoris can produce recombinant proteins intracellularly or extracellularly. In this study, recombinant Pichia pastoris has a signal peptide factor derived from Saccharomyces cerevisiae (from pPICZA-G) so that glargine is secreted out of cells of recombinant Pichia pastoris. Eight recombinant Pichia pastoris were tested for glargine production. Six colonies of recombinant Pichia pastoris (k1, k2, k4, k6-k8) produced glargine, which was about 10 KDa (Figure 8). For further confirmation, the glargine needs to be analyzed by Western Blot. Western Blot involves separating the protein, transferring it to a membrane, and detecting glargine as a target protein by a specific antibody. Western blot can provide accurate, specific, and repeatable results (Meftahi et al. 2021).

4. Discussion

Digestion with a specific enzyme was used to confirm the inserted gene in a plasmid and determine the plasmid’s molecular weight size. pPICZA-G plasmid can be digested by PstI, Clal, PmLI, EcoRI, BsmBI, Sfil, Asp718, Xhol, Kpnl, SacII, Xbal, NotI, BamHI, BgII, Pmel, BstX, and Sacl (Figure 1). In this study, Sacl was used to digest pPICZA-G plasmid. This plasmid has a unique site so that linear pPICZA-G plasmid integrates into AOX1 locus on Pichia pastoris genome. In addition to Sacl, Pmel and BstXI digest the pPICZA-G plasmid to produce a linear pPICZA-G plasmid with a unique site that can integrate at the AOX1 locus of Pichia pastoris genome. The size of linearized pPICZA-G plasmid from result of isolation was about 3,800 bp (Figure 2). Further confirmation was carried out by DNA sequencing of the glargine gene in pPICZA-G plasmid using AOX1 primer. Sequencing results showed that the glargine gene was in pPICZA-G plasmid (Figure 3).

Acknowledgements

We thank the National Research and Innovation Agency (BRIN) and Educational Fund Management Institution (LPDP) for providing financial support. This work was also supported by Padjadjaran University.
References

