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1. Introduction
  

	 Indonesia produced 129,147 tons of melons 
(Cucumis melo L.) in 2021, slightly decreasing from 
its previous production of 138,177 tons in 2020 
(BPS 2021). Open field cultivation supplies most 
of Indonesia's melons but is limited by disease 
pressure and environmental factors such as high 
rainfall intensity, heat, and strong winds. A suitable 
environment for a plant could optimize its growth, 
while the environment itself could be managed 
using a greenhouse (Suhardiyanto 2009; Yuwono 
et al. 2014). One of the essential processes in plant 
growth is photosynthesis during the vegetative and 
generative phases, as it affects the development 
of roots, leaves, and stems and the formation and 
development of flowers, fruits, and seeds (Arbaul 
Fauziah 2021). Good plant management in the 
vegetative phase greatly influences the success of 
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growth and productivity in the generative phase 
so that the quality of fruit is maximized, including 
melon fruit.
	 Cultivation of melon in the greenhouse could 
improve production by providing control of 
environmental factors, i.e., air temperature, light 
intensity, carbon dioxide (CO2) concentration, 
and relative humidity. Each parameter affects 
the plant's photosynthetic rate, indicating plant 
growth (Proklamaningsih et al. 2013; Kaiser et 
al. 2017). Photosynthesis is an essential plant 
metabolic pathway, contributing to growth and 
biomass production  (Calzadilla et al. 2022). The  
photosynthetic rate can be determined by measuring 
the rate of CO2 assimilation (Greer 2018). Plant 
growth is a direct expression of biomass production, 
driven by photosynthesis, primarily dependent 
on light, water, and nutrients. Improvements 
in photosynthetic processes have allowed the 
development of highly productive agricultural 
systems (Ribou et al. 2013). Photosynthesis is 



influenced by genetic factors, including species, leaf 
age, and translocation rates, as well as environmental 
factors, including water availability, CO2 availability, 
light, air temperature, and nutrient availability 
(Trouwborst et al. 2011; Ippoliti et al. 2016; Fu et al. 
2017; Zhou et al. 2019). Air temperature affects the 
rate of photosynthesis and other plant physiological 
parameters (Setyanti et al. 2013). Light is the primary 
energy source for photosynthesis, so light intensity 
significantly affects the photosynthetic efficiency 
of plants (Susilawati et al. 2016; Yustiningsih 2019). 
Air humidity is closely related to air temperature 
and photosynthesis, while an increase in CO2 partial 
pressure causes the photosynthetic rate to increase 
(Kooijmans et al. 2019). Another parameter that is 
not directly related to the model output but can be 
involved in improving the quality of the prediction 
model is the plant row position. Setting the 
appropriate parameter can have an impact on the 
amount of light that melon plants will receive for 
photosynthesis needs. 
	 A model estimating the photosynthetic rate in 
melon plants based on environmental parameters 
that can be measured directly (i.e., air temperature, 
light intensity, CO2 concentration, and relative 
humidity) would benefit indoor growers by allowing 
them to adjust these parameters to optimize the 
photosynthetic rate. Photosynthetic rate models on 
plant growth cultivated in greenhouses have been 
carried out by Jung et al. and Lenny et al. on lettuce 
plants, and Zhang P et al. on cucumber plants, using 
artificial neural networks (Jung et al. 2016; Lenny et 
al. 2020; Zhang et al. 2020a). Existing photosynthetic 
rate models are quite informative for controlling 
microenvironmental parameters. However, 
specifically for melon crops, developing a prediction 
model for the photosynthetic rate of melon crops has 
yet to be widely done. A good understanding of the 
factors that affect photosynthetic rates can be used 
to improve the management of melon plants in the 
greenhouse.
	 This research aimed to build a prediction model 
of the golden melon plant's photosynthetic rate at a 
greenhouse's vegetative phase using artificial neural 

networks (ANNs) involving several environmental 
parameters related to changes in photosynthetic 
rate.

2. Materials and Methods

	 A photosynthetic rate prediction model using 
ANNs was developed to cultivate melon plants at 
the vegetative phase. A neural network was used 
to model the photosynthetic rate because of the 
ability of ANNs to explain the relationship between 
these and other parameters inside the greenhouse 
(Ouyang et al. 2020). Some researchers have used 
prediction model techniques in different aspects of 
plant management, particularly for predicting total 
yield (Naroui Rad et al. 2015; Ghasemi-Varnamkhasti 
et al. 2018; Niazian et al. 2018). The development 
of the photosynthetic rate prediction model using 
ANNs follows the stages (Graupe 2019; Malekian and 
Chitsaz 2021), as shown in Figure 1.

2.1. Data Collection 
	 Plant and environmental data to develop the 
prediction model were taken on November 23, 2020 
(26 days after planting), in an 8 m × 24 m arch-type 
greenhouse located at the Siswadhi Soepardjo Field 
Laboratory, Department of Mechanical Engineering 
and Biosystems, Faculty of Agricultural Technology, 
IPB University. Figure 2 shows that hydroponic melon 
cultivation was automatically controlled using an 
evaporative cooling and drip irrigation system. Drip 
irrigation, using a pump, delivered water and nutrients 
from a nutrient tank to the growing media. Nutrient 
concentrations and pH values were controlled using 
an automatic control system.
	 Melon plants were configured on five rows of plants 
with a distance between rows of plants 50 cm, while 
in each row, there were two plants with a distance of 
30 cm. Plants were cultivated with planting media of 
cocopeat and rice husks combination at a 3:1 ratio. The 
melon seeds used in this experiment were Golden Luna 
(F1). During the experiment, air temperature, relative 
humidity, and sunlight intensity were observed using 
a sensor installed inside the greenhouse. 
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	 The plants used to observe the photosynthetic 
rate were 75, randomly selected from a population 
of 400 plants cultivated in the greenhouse. The 
photosynthetic rate (CO2 assimilation rate) was 
measured using a portable photosynthetic instrument 
(LI-COR) with LI-6800 type on selected leaf samples, 
namely between the 12th leaf to the 15th leaf from the 
first leaf branch to grow on melon plants. The leaf 
samples were selected from leaves in the middle, 

the outermost leaves, and leaves facing upward and 
not shaded by other leaves on the same stem to have 
the full photosynthetic ability (Zakiyah et al. 2018). 
Other environmental parameters were measured 
using a sensor installed inside the greenhouse, i.e., air 
temperature, air relative humidity, sunlight intensity, 
air velocity, and CO2 concentration. Figure 3 shows 
a photosynthetic rate measurement process with LI-
6800 as a measuring instrument.

Figure 1. ANNs model development process for the photosynthetic rate prediction of vegetative melon plants in the 
greenhouse
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Figure 2. 	Hydroponic melon cultivation location: (A) Arch type greenhouse 8 m × 24 m, (B) greenhouse environment, (C) 
drip irrigation system, (D) dosing control system, (E) nutrient solution distribution control, and (F) hydroponic 
installation

Figure 3. 	Photosynthetic rate measurement process: (A) LI- 6800 as measuring instrument, (B) chambers LI-6800; (C) 
melon plant sample leaf

(A)
(B)

(C)
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2.2. Pre-processing Data
	 The collected data were tabulated, cleaned, 
and normalized to produce a dataset format ready 
to be trained in the learning process. The pre-
processing stage was conducted to prepare the best 
dataset, allowing the ANNs to learn more efficiently 
and produce accurate results. The 1108 datasets 
generated in this stage were divided into two groups, 
67% for training and 33% for validation. The data 
were then normalized to a value range of 0.2 to 0.8. 
Normalization was done to standardize the input 
variable values scale and avoid the dominance of 
variables with a more extensive range of values that 
can interfere with the learning process. Examples 
of data pre-processing results of environmental 
parameters and photosynthetic rates for melon 
cultivation in the greenhouse are given in Table 1.

2.3. ANNs Development Model with Inputs 
Variation Scenarios
	 The photosynthetic rate prediction model was 
built using the Python programming language using 
a backpropagation method, and the following ANNs 
parameters, such as learning rate, momentum, 
learning rate initial, and iteration, as given in Table 
2. Backpropagation-type ANNs are based on the 

ability of the algorithm to minimize prediction 
errors by repeatedly repropagating those errors 
from the output layer to the input layer (Mouloodi 
et al. 2022). ANNs backpropagation starts its training 
process with a forward propagation (Dragović 2022), 
then propagates the signals from the seven input 
parameters to predict the photosynthetic rate. Based 
on the ANNs parameters, the model is trained by trial 
and error using the normalized training dataset on the 
input-hidden-output structure. The iteration process 
will end when it has found the ANNs structure with 
the lowest error.
	 The best-structured model in this study was 
sought through five scenarios based on the number 
and type of input parameters. The five scenarios 
include scenario A with three parameters, i.e., air 
temperature, sunlight intensity, CO2 concentration; 
scenario B with four parameters, i.e., air temperature, 
sunlight intensity, CO2 concentration, relative 
humidity, scenarios C, D, and E, each with five 
parameters, but one of them is given a difference, 
i.e., air velocity as the last parameter in C, leaf 
number as the last parameter in D and plant row as 
the last parameter in E, respectively. The best ANNs 
model formed by the best combination of inputs 
was indicated by the higher R2 value and the lower 
RMSE values (Supriyanto et al. 2019, Zhang et al. 
2020b), indicated by the coefficient of determination 
and Root Mean Square Error as in equations 1 and 2. 
(Sushmi and Subbulekshmi 2022).

Table 1. Example of normalized environmental parameter 
data pre-processing results in the range of 0.2 to 
0.8

Table 2. ANNs parameters used in model development

Internal air 
temperature

Parameter

0.35
0.55
0.75
0.30
0.80
0.20
0.85
0.45
0.60
0.40

Hidden Layer
Activation Function
Solver Stochastic Gradient
Momentum
Learning Rate
Learning Rate Initial
Maximum Iteration
Random state

Air relative 
humidity

0.45
0.35
0.30
0.60
0.25
0.80
0.27
0.50
0.40
0.55

sunlight 
intensity

0.30
0.60
0.70
0.35
0.80
0.20
0.85
0.45
0.55
0.40

Photosynthetic 
rate

Unit

0.40
0.60
0.65
0.35
0.75
0.25
0.80
0.50
0.55
0.45

1–10
logistic
Descent
0.1-0.9
Constant
0.1–0.9
10,000
Initial weights and biases

R2  = 1 - (1)(Ti - Yi)
2

(Tr - Ti)
2

n
ni
i

∑
∑( )/

RMSE = 1
N√ (2)(Ti - Yi)

2n
i∑

Where: 
Ti	 = measurement result for the i-th dataset
Yi	 = prediction result for the i-th dataset
Tr	 = average measurement results 
N	 = quantity of validation data

2.4. Validation of Model	
	 Validation is the process of evaluating the performance 
of a model that has been trained using validation data 
(data that has never been used before) to ensure that 
the model can generalize well to unknown data. If the 
model can generalize well, then the performance of 
the model will also be confirmed. The performance 
indicators still use equations 1 and 2.

34	                                                                                                                                               	                      Erniati et al.



3. Results

3.1. Microenvironmental Data Conditions
	 Table 3 shows the microenvironmental parameters 
inside and outside the greenhouse and the growth 
parameter of melon cultivated in the greenhouse. 
The sunlight intensity ranged from 118 to 411 Wm-2, 
with very low air velocity inside the greenhouse (0.0 
to 0.9 ms-1). The CO2 concentration ranged from 370 
to 395 ppm, and the photosynthetic rate ranged from 
2.45 to 17.39 µmol m-2 s-1.
	 The highest standard deviation to the mean value 
of the parameters occurred in light intensity at 76.97, 
while the lowest standard deviation occurred in air 
velocity at 0.18. The higher the standard deviation 
value, the more dispersed the light in the plant 
house is from the mean value or more volatile than 
the other parameters. Eight environmental and 
growth parameters were measured, showing that 
each parameter changed quite volatile except for air 
velocity and temperature inside the greenhouse.

3.2. Photosynthetic Rate Model
	 One thousand one hundred and eight collected 
datasets were used to develop the photosynthetic rate 
model with many parameters, such as momentum, 
learning rate, and hidden layers, to identify the model 
structure model that produced the best prediction 
output. The model was trained by modifying the 
weights and biases with 10,000 maximum iterations 
for each combination. Each combination's applied 
learning rate and momentum were 0.8 and 0.6, 
respectively. The modeling phase developed five 
scenarios for predicting photosynthetic rates to 
compare with measured photosynthetic rates. The 
parameters used for photosynthetic rate prediction 
are based on parameters easily measured with 
standard devices in the greenhouse. Then, based 
on previous research, those parameters with a 
strong relationship with photosynthetic rate were 
selected. One of the best-performing structures for 
photosynthetic rate with three inputs is shown in 
Figure 4.
	 The best performance of the photosynthetic rate 
prediction model for three input parameters was 
obtained at the number of hidden layers 5, with R2 and 
RMSE of 0.9881 and 0.464, respectively. The measured 
photosynthetic rate was strongly correlated with 
the predicted results, indicating that the developed 
ANNs can predict the photosynthetic rate of melon 

crops using measured environmental conditions. The 
linear equation obtained in the model scenario also 
shows that the predicted photosynthetic rate is 0.09 
mol-2 s-1 lower than the actual photosynthetic rate. A 
summary of the performance of the five prediction 
model development scenarios is presented in Table 
4.
	 Scenario A has three input parameters, i.e., 
air temperature, sunlight intensity, and CO2 
concentration. The models in scenario A had lower 
errors in the 3-5-1 ANNs structure (3 input-5 neuron 
hidden-1 output) with an R2 value of 0.981 and an 
RMSE value of 0.464. In the second scenario (scenario 
B), the relative humidity parameter was added, so 
the model was developed using four inputs, i.e., air 
temperature, sunlight intensity, CO2 concentration, 
and relative humidity. The models have lower errors 
in the 4-6-1 ANNs structure with an R2 value of 0.979 
and an RMSE value of 0.492.
	 In the third scenario (scenario C), the air velocity 
parameter is added to form five input parameters, 
i.e., air temperature, sunlight intensity, CO2 
concentration, relative humidity, and air velocity. 
The models in these scenarios had a lower error 
in the 5-6-1 ANNs structure with R2 and RMSE 
values of 0.983 and 0.459, respectively. In the 
fourth scenario (scenario D), with one parameter 
added, there are five input parameters, i.e., air 
temperature, sunlight intensity, CO2 concentration, 
relative humidity, and leaf number. The models in 
these scenarios had a lower error in the 5-6-1 ANNs 
structure with R2 values of 0.982 and RMSE values 
of 0.488, respectively. In the fifth scenario (scenario 
E), with one parameter added, there are five input 
parameters, i.e., air temperature, sunlight intensity, 
CO2 concentration, relative humidity, and plant row. 
The models in these scenarios had a lower error in 
the 5-6-1 ANNs structure with R2 values of 0.986 and 
RMSE values of 0.420, respectively. Scenario E is the 
best model, indicated by the largest R2 value and the 
smallest RMSE. The structure model and relationship 
between the predicted photosynthetic rate and the 
actual value are given in Figure 5.

4. Discussion

	 Scenario E is the best scenario to predict the 
photosynthetic rate in melon plants in the vegetative 
phase using five existing parameters, i.e., air 
temperature, sunlight intensity, CO2 concentration, 
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Table 3. Descriptive statistical analysis of greenhouse environmental parameters
Parameters

Photosynthetic rate

Unit

µmol m-2 s-1

Min

2.45

Max

17.39

Mean

9.23

SD

3.52

Air temperature
Sunlight intensity
CO2 concentration
Relative humidity
Air velocity
Leaf number
Plant row

°C
Wm-2

ppm
%

m s-1

25.4
118.0
370.0

88.0
0.0

10.0
1.0

27.8
411.0

395.0
95.0

0.9
18.0

5.0

26.66
213.48
381.77

91.07
0.06

14.00
3.00

0.64
76.97

5.11
1.95
0.18
1.62
1.38

Input

Output

A B
Figure 4. One of the ANNs model structures with three input parameters (A) model structure, (B) model performance

Table 4. Summary of model performance for each scenario in the ANNs backpropagation model
Scenario ANNs structure R2 RMSEInput parameter

A
B

C

D

E

3-5-1
4-6-1

5-6-1

5-6-1

5-6-1

0.981
0.979

0.983

0.982

0.985

0.464
0.492

0.459

0.488

0.420

air temperature, sunlight intensity, CO2 concentration
air temperature, sunlight intensity, CO2 concentration, 

relative humidity
air temperature, sunlight intensity, CO2 concentration, 

relative humidity, air velocity
air temperature, sunlight intensity, CO2 concentration, 

relative humidity, leaf number
air temperature, sunlight intensity, CO2 concentration, 

relative humidity, plant row

A B
Figure 5. Comparison between measured and predicted melon photosynthetic rates using five input parameters, i.e., air 

temperature, sunlight intensity, CO2 concentration, relative humidity, and plant row
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relative humidity, and plant rows. Compared to the 
previous scenario, adding the plant row parameter 
has a more performance-enhancing effect than 
adding the number of leaves and air velocity 
parameters. With the addition of plant rows, the 
four input parameters have a more substantial 
influence on photosynthetic rate activity. Therefore, 
these five parameters may be considered in melon 
cultivation because they strongly affect the quality 
of the photosynthetic rate and the growth of melon 
plants. 
	 The model obtained an R2 value above 0.9, so 
the ANNs model can predict the photosynthetic 
rate of melon plants well. Photosynthesis is one 
of the most important metabolic processes closely 
related to plant physiological changes (Sudjatha and 
Wisaniyasa 2017). Accordingly, photosynthesis is a 
plant metabolic process to form carbohydrates that 
affect plant growth factors. It was noted that the 
model with a 5-6-1 structure can support the best 
metabolic processes in melon plants, which affect 
growth-promoting hormones and growth-inhibiting 
hormones (Khairuna 2019). In scenario E, the 
parameters that strongly influence the prediction 
of photosynthetic rate are air temperature, sunlight 
intensity, CO2 concentration, relative humidity, and 
plant row. Air temperature affects enzyme activity 
and reaction rates in photosynthesis, where the 
optimal air temperature for melon vegetative 
growth is 20 to 30°C, while in the generative period, 
it is around 25°C (Prajnanta 1997). Lack of sunlight 
will affect the photosynthetic rate of a plant 
(Samadi 2007); as a C3 plant, melon plants have 
low photosynthetic efficiency, so they need sunlight 
that ranges from 10 to 12 hours per day. Higher CO2 
concentrations in the air around melon plants can 
increase the rate of photosynthesis, while relative 
humidity affects the rate of transpiration and gas 
exchange in the leaves.
	 The recommendation given is the value range 
of each parameter strongly influencing the 
photosynthetic rate, for example, air temperature 
ranging from 25.4 to 27.8°C and other parameters, 
as in Table 1. Adjustment of these value ranges 
during the cultivation process was able to predict 
the photosynthesis rate well, resulting in energy 
for improved growth and better productivity. 
The development of the photosynthetic rate 
model is expected to provide implications for 
melon cultivators to understand the effects of 

environmental parameters on plant photosynthetic 
rates. By understanding the parameters of 
photosynthetic rate, cultivators can predict how 
changes in environmental parameters will affect the 
productivity of melon plants.
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