
Application of Proteomics to Identify Fertility Markers in Angus 
Bull Sperm

Naseer A. Kutchy1, 2, Sule Dogan1, 3, Xiaojun Wang1, Einko Topper4, Abdullah Kaya5, Erdogan Memili1*

1Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA 
2Department of Genetics, Yale University, New Haven, CT, USA
3IVF Michigan, Bloomfield Hills, MI, USA
4Alta Genetics, Inc., Watertown, WI, USA
5Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey

1. Introduction
  

	 In addition to providing a half of the genome, 
sperm also transfer essential transcripts and proteins 
to the oocyte. Any defects in sperm proteins derived 
from either genome or epigenome vitally affect 
male fertility and early embryonic development 
(Dada et al. 2012). The prevalence of male infertility 
among the American infertile couples was found 
to be 17% in 2010 according to the Society for 
Assisted Reproductive Technology data (SART). Male 
infertility is also a concern in cattle reproduction as 
well because thousands of cows can be inseminated 
using cryopreserved sperm from a single bull. Since 
male fertility has such a paramount influence on 
genetic improvement of the herd, much greater 
considerations of male selection, their management, 
and replacement are needed (Rahman et al. 2017). 
Using high quality sperm and proper fertilization 

techniques are critical for maintaining the conception 
rates with artificial insemination (AI) in the field 
(Kwon et al. 2015b).
	 Sperm proteins can be classified by their 
physiological functions or their cellular locations. 
Locations of several sperm proteins were 
demonstrated to be acrosomal, mitochondrial, 
nuclear matrix, cytoskeletal (i.e., tubulins and actins) 
and membrane proteins (i.e., aquaporins). Most of 
the sperm proteins were structural proteins such as 
ODF2 and tubulin which are located in the flagellum 
play important roles in sperm physiology (Hoyer-
Fender et al. 1998; Donkor et al. 2004). On the other 
hand, some other  sperm proteins such as kinases 
and superoxide dismutase (SOD) are synthesized in 
the cytosol and have enzymatic functions. Although 
the significance of sperm in cattle reproduction 
has been obvious, sperm proteins and molecular 
mechanisms of uncompensable infertility in Angus 
breed are vastly undefined. Because the bulls were 
similar in their genotypes, epigenetics (such as 
posttranslational modifications of proteins that 
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influence gene expression without any changes in 
DNA through environmental factors such as nutrition, 
management, and climate) may play important 
roles in male fertility. Therefore, the purpose of this 
study was to uncover sperm proteome of Angus 
bulls to identify possible protein markers affecting 
male fertility. To accomplish our goal, we used a 
quantitative proteomics methods 2D-DIGE and 
matrix assisted laser desorption/ionization time-
of-flight mass spectrometry (Choi et al. 2008) and 
bioinformatics. This pioneering and comprehensive 
proteomics study of Angus bull sperm is significant 
because the results are hypothesis generators and 
potential fertility markers to determine and measure 
semen quality and bull fertility.

2. Materials and Methods

2.1. Experimental Design
	 The frozen semen samples and the fertility data 
from four Angus bulls with different fertility index and 
satisfactory semen quality were obtained from Alta 
Genetics, Inc. (Watertown, WI, USA). Cryopreserved 
semen samples were washed three times to remove 
the cryoprotectants, and then the proteins were 
extracted for 2D-DIGE analysis. In addition, MALDI-
TOF/TOF analysis was used to identify proteins. 
Further, bioinformatics and pathway analyses were 
carried out to identify the protein networks and 
pathways. All chemicals were purchased from Sigma-
Aldrich Chemicals, St. Louis, MO, USA except those 
stated.

2.2. Determination of Bull Fertility and Isolation 
of Sperm
	 Fertility of the bulls was tested through artificial 
insemination (AI) of 1, 265 cows on seven farms. Frozen 
semen samples from four bulls were distributed to 
seven herds, and cows were bred in standing heat. 
The pregnancy diagnoses were performed by rectal 
palpation on day 40 post insemination. The breeding 
numbers and the conception rates of the four bulls 
are presented (Figure 1). Sperm were isolated 
from four Angus bulls with different fertility using 
percoll gradient according to Feugang et al. (2009). 
Sperm pellets were washed with PBS (Gibco, Grand 
Island, NY, USA) three times, centrifuged at 500 g 
and aliquoted as 10 × 106 spermatozoa per tube. The 
pellets were kept at -80°C prior to shipping, and 
shipped on dry ice to Appliedbiomics (Hayward, CA, 
USA) for 2D-DIGE and mass spectrometry.

2.3. Isolation of Proteins from Sperm and 
CyDye Labeling
	 Sperm pellets were resuspended in 120 µl of 2-D 
cell lysis buffer (30 mM Tris-HCl, pH 8.8, 7 M urea, 
2 M thiourea, and 4% CHAPS) supplemented with 
protease inhibitor cocktail (Roche San Francisco, 
CA, USA) followed by two seconds of sonication 
(VerTis, Gardiner, NY, USA). Samples were then 
incubated on a rotator at room temperature (RT) for 
30 minutes and centrifuged at 13,000 g at 4°C for 
30 minutes. The supernatant was collected, and the 
protein concentration was measured using Bio-Rad 
protein assay (Bio-Rad, Hercules, CA, USA). Proteins 
were labeled for each sample. Thirty micrograms of 
proteins were mixed with 0.7-0.9 µl of diluted CyDye 
(1:5 diluted with DMF from 1 nmol/µl stock) and kept 
in the dark on ice (~4°C) for 30 minutes. The four 
samples (total concentration 20 µg/gel) were mixed 
together to create the internal standard. Samples 
from each group were labeled with Cy2, Cy3, and Cy5, 
respectively. The labeling reaction was stopped by 
adding 0.7-0.9 µl of 10 mM Lysine to each sample and 
incubating in the dark on ice for an additional 15 min. 
The labeled samples were then mixed together, and 
130 µl destreak solution (GE Healthcare, Piscataway 
Township, NJ, USA) and 100 µl of Rehydration buffer 
(7 M urea, 2 M thiourea, 4% CHAPS, 20 mg/ml DTT, 1% 
Pharmalyte, and trace amount of bromophenol blue) 
were added to the labeling mix for a total volume of 
260 µl. The samples were put on a rotator for 15 min. 

Figure 1. Fertility ranking of the bulls whose sperm 
were used in 2D-DIGE analysis. (a) four bulls 
are shown from A to D based on the number 
of breeding, (b) conception rates obtained 
from the field following AI for the same bulls 
are also displayed. Note that the fertility of 
these bulls gradually decreases from bull A to 
bull D, so Bull A and Bull B were considered 
as higher fertility than Bull C and Bull D 
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and centrifuged at 16,060 g for another 15 min. The 
labeled samples were then loaded onto a strip holder 
and immersed with a 13 cm IPG strip. Two 2D-DIGE 
gels were replicated for each experiment, for Bull C 
vs. Bull A and similarly for Bull D vs. Bull B. Since the 
protein expression patterns from two high and two 
low fertility bulls were compared in the same gel, 
only two gels were used.

2.4. Isoelectric Focusing (IEF) and Sodium Dodecyl 
Sulfate-Polyacrylamide Gel Electrophoresis (SDS-
PAGE), Image Scan and Data Analysis
	 Once the labeled samples were loaded, IEF 
(pH3-10 linear) was run according to the protocol 
provided by Amersham BioSciences (GE Healthcare, 
Piscataway Township, NJ, USA). The IPG strips were 
then incubated in the freshly made equilibration 
buffer-1 (50 mM Tris-HCl, pH 8.8, containing 6 M urea, 
30% glycerol, 2% SDS, trace amount of bromophenol 
blue, and 10 mg/ml Dithiothreitol; DTT) with gentle 
shaking for 15 min. Then the strips were rinsed in 
the fresh equilibration buffer-2 (50 mM Tris-HCl, pH 
8.8, containing 6 M urea, 30% glycerol, 2% SDS, trace 
amount of bromophenol blue, and 45 mg/ml DTT) 
with gentle shaking for 10 min. Next, the IPG strips 
were rinsed in the SDS-gel running buffer prior to 
transferring into 12% SDS-gels. The SDS-gels were run 
at 15°C until the dye ran out of the gels. Gel images 
were scanned immediately following the SDS-PAGE 
using typhoon TRIO (Amersham BioSciences, GE 
Healthcare, Piscataway Township, NJ, USA). The 
scanned images were then analyzed by Image Quant 
software (version 6.0, Amersham BioSciences, GE 
Healthcare, Piscataway Township, NJ, USA), followed 
by in-gel analysis using DeCyder software version 6.0 
(Amersham BioSciences, GE Healthcare, Piscataway 
Township, NJ, USA). The fold changes of the protein 
expression levels were obtained from in-gel DeCyder 
analysis.

2.5. Identification of Differentially Expressed 
Proteins Using Mass Spectrometry
	 Protein spots of interest were excised from 
preparative gels (~600 μg of protein) by using 
an Ettan spot picker (Amersham Biosciences, GE 
Healthcare, Piscataway Township, NJ, USA) and 
digested with trypsin (Promega, Madison, WI USA). 

The trypsin-digested peptides were extracted out 
and de-salted using C-18 ziptip (Millipore, Billerica, 
MA, USA). Then, the desalted peptides were used 
for MALDITOF protein identification (MALDI-TOF/
TOF mass spectrophotometer, ABI-4700 from 
Applied Biosystems, Inc, Foster City, CA, USA). Using 
the Mascot search engine (Matrix Science, Boston, 
MA, USA), protein databases of national center for 
biotechnology (NCBI)/SwissProt (http://www.ncbi.
nlm.nih.gov/) and (www.uniprot.org) were searched 
for >95% matches of high-quality mass spectra. For 
the differentially expressed protein data, a ratio of 
protein expressions from relatively lower fertility 
bulls over relatively higher fertility bulls was 
calculated as C/A and D/B. Subsequently, an average 
of these two ratios was taken for each protein using 
the equation [(C/A + D/B)/2] to find the mean, for 
more accuracy. Eighty proteins were identified to be 
different in spermatozoa from the four bulls based on 
their fertility index.

2.6. Bioinformatics and Pathway Analysis of 
the Differentially Expressed Proteins
	 Functional gene annotation clustering of the 
differentially expressed proteins was performed 
using DAVID bioinformatics database (http://david.
abcc.ncifcrf.gov) to reveal their molecular functions 
in biological processes. The pathway analysis was 
completed using ingenuity pathway, IPA (http://
www.ingenuity.com) to determine a functional 
interactome between the differentially expressed 
proteins and bull fertility. The GenInfo Identifier (GI) 
accession numbers of 80 proteins were imported 
into the IPA software prior to data analysis. Then, the 
unmapped proteins were determined and manually 
converted into their human counterparts using 
ENSEMBL database (http://www.ensembl.org) with 
their identity (%). Afterwards, the pathway analysis 
was performed using IPA with the proteins that were 
mapped automatically and manually. The proteins 
that would be further analyzed using bioinformatics 
tolls were selected according to IPA interactome 
results.

2.7. Sperm Proteins as Markers Across Breeds
	 Through harnessing the power of comparative 
biology, we performed a comprehensive literature 
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(A and B) and low fertility bulls (C and D), and the 
expression levels of these proteins ranged from 
-4.65 to 8.2.

3.2. Differentially Expressed Proteins in 
Sperm from Bulls with Varying Fertility
	 We found total of 80 proteins that were 
differentially expressed in the sperm from the 
four bulls having varying fertility (Table 1). These 
expressed proteins exhibited various levels of fold 
differences among the bulls. While most of these 
proteins corresponded to known proteins, others 
were similar to known proteins, or to predicted 
proteins or hypothetical proteins.

3.3. Bioinformatics and Pathway Analysis of 
the Differentially Expressed Proteins
	 According to the IPA output, 47 canonical 
pathways and networks were identified (Table 2 
and 3). Twelve of these canonical pathways were 

search on proteins of bovine sperm to uncover 
potential fertility markers that can be used in 
selection of breeding bulls. The proteins were 
included in the following groups according to their 
molecular physiology: Chromatin proteins, seminal 
plasma proteins, acrosome proteins, ATP synthesis 
proteins, capacitation proteins, cytoskeletal 
proteins, and other proteins.	

3. Results

3.1. Protein Analysis by 2D-DIGE
	 We detected approximately 2,000 protein spots 
in each of the 2D gels developed using sperm from 
four bulls with varying fertility per gel, Bull C/Bull 
A and Bull D/Bull B, respectively (Figure 2a and b). 
Among all the data obtained from the two 2D gels, 
80 of the differentially expressed protein spots 
were detected. Overall about 4% of all protein spots 
were differentially expressed between relative high 
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Figure 2. Differentially expressed proteins in sperm from bulls with different fertility. (a) the 2D-DIGE data obtained 
by using spermatozoa from (Bull C vs. Bull A).  (b) 2D-DIGE data obtained by using spermatozoa from (Bull D 
vs. Bull B). The 2D-DIGE gel pictures analyzed by Image Quant and DeCyder software are displayed. The same 
amounts of protein extracts from spermatozoa were labeled separately and subjected to a 13 cm IPG strip (pH 
3-10) and then transferred to SDS-PAGE. Differentially expressed proteins are circled; dotted circles indicate the 
proteins sequenced for identification. Molecular weights of markers are listed on the left, while the pH ranges 
are indicated at the bottom. Spots 2 and 31 are Outer Dense Fiber of Sperm Tails 2 (ODF2) and manganese-
dependent superoxide dismutase (MnSOD), (Red asterisk), respectively
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Table 1. Sperm proteins detected using 2D-DIGE analysis and LC-MSMS. Differentially expressed proteins in the 
spermatozoa from the four bulls with different fertility were represented. This table is composed of the spot 
numbers, gi accession numbers, and molecular weights of these 80 proteins

Top ranked protein 
name (species)

PREDICTED: 
similar to testis 
specific 10 
isoform 1 [Bos 
taurus]

Outer dense fiber 
of sperm tails 2 
[Bos taurus] 

PREDICTED: 
similar to EF-
hand domain 
(C-terminal) 
containing 1 
isoform 1 [Bos 
taurus] 

Outer dense fiber 
of sperm tails 2 
[Bos taurus] 

Outer dense fiber 
of sperm tails 2 
[Bos taurus] 

Chain E, leech-
derived tryptase 
inhibitorTRYPSIN 
COMPLEX 

Tubulin, beta 2C 
[homo sapiens] 

Tubulin, beta, 2 
[homo sapiens] 

PREDICTED: 
similar to outer 
dense fiber of 
sperm tails 2 
isoform 10 [canis 
familiaris] 

PREDICTED: 
similar to outer 
dense fiber of 
sperm tails 2 
isoform 10 [canis 
familiaris] 

Tubulin, alpha 1a 
[mus musculus] 

Enolase 1 [Bos 
taurus] 

Hypothetical 
protein 
LOC511761 [bos 
taurus] 

PREDICTED: 
similar to tubulin 
alpha-3 chain 
(alpha-tubulin 3) 
[canis familiaris] 

Tubulin, alpha 1a 
[mus musculus] 

Ratio bull 
C/bull A

1.71

1.64

1.11

1.46

1.62

2.03

1.89

2.09

1.18

1.3

2.79

1.03

1.69

3.2

1.97

Ratio bull 
D/bull B

8.95

14.8

1.37

1.56

1.49

2.07

1.86

1.93

1.42

1.62

1.51

-1.3

1.49

1.83

2.53

Protein 
MW 

81188

75450.6

73984.5

75450.6

75450.6

23457.4

49808

49799

52075.9

52075.9

49927.6

47296.4

30193.3

49913.6

49927.6

Protein 
PI 

5.65

7.52

5.78

7.52

7.52

8.26

4.83

4.79

5.81

5.81

4.97

6.37

6.21

4.97

4.97

Pep.
count 

13

13

26

27

29

2

20

22

26

23

15

21

15

15

14

Protein 
score  

164

235

473

554

697

73

543

585

536

604

688

666

427

577

442

Protein 
score 
C. I. % 

100

100

100

100

100

96.6

100

100

100

100

100

100

100

100

100

Total
ion 
score 

63

166

272

397

514

56

324

330

348

434

520

458

279

418

314

Total 
ion 
C. I. % 
99.8

100

100

100

100

98.9

100

100

100

100

100

100

100

100

100

Average 
ratio 

5.33

8.21

1.24

1.51

1.55

2.05

1.87

2.01

1.3

1.46

2.15

-0.35

1.59

2.51

2.25

Accession
 no. 

gi|194671321 

gi|84000345 

gi|76650703 

gi|84000345 

gi|84000345 

gi|3318722 

gi|23958133 

gi|5174735 

gi|73967892 

gi|73967892 
 

gi|6678465 

gi|87196501 

gi|115495817 

gi|73996007 

gi|6678465 
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Top ranked protein 
name (species)

short-chain 
acyl-CoA 
dehydrogenase 
[bos taurus] 

Lactate 
dehydrogenase 
a-like 6B [bos 
taurus] 

Phosphoglycerate 
kinase 2 [bos 
taurus] 

mCG20287 [mus 
musculus] 

mCG20287 [Mus 
musculus] 

TUBB2C protein 
[homo sapiens] 

hCG1992406, 
isoform CRA_b 
[homo sapiens] 

Chain D, 
cytochrome Bc1 
complex from 
bovine 

Hypothetical 
protein 
LOC510569 [bos 
taurus] 

Hypothetical 
protein TP0959 
[treponema 
pallidum 

PREDICTED: 
similar to 
ENSANGP00

	 000002667 
	 [bos taurus] 
mCG20287 [mus 

musculus] 
Unnamed protein 

product [mus 
musculus] 

Phosphatidyletha
	 nolamine-

binding protein 
4 [bos taurus] 

hypothetical 
protein 

	 LOC510569 
	 [bos taurus] 
Manganous 

superoxide 
dismutase; 
MnSOD [bos 
taurus] 

PREDICTED: 
hypothetical 
protein LOC736

	 248 isoform 2 
	 [pan troglodytes] 
TUBB2C protein 

[homo sapiens]

Ratio bull 
C/bull A

1.68

2.25

1.64

2.63

2.71

3.8

3.29

1.64

-2.93

2.03

3.01

2.35

2.56

3.15

-3.19

-2.91

4.37

2.13

Ratio bull 
D/bull B

1.96

1.41

1.68

1.98

2.3

1.9

2.29

1.48

-2.41

1.82

1.77

1.52

2.45

1.32

-2.92

-6.4

4.23

1.86

Protein 
MW 

44523.9

41565.8

44729.3

39342.1

39342.1

25858.4

42187

27269.5

17804.6

13894

19864.8

39342.1

32237.9

25129.6

17804.6

24574.6

43100.4

25858.4

Protein 
PI 

8.82

8.91

8.51

5.14

5.14

4.95

5.03

6.49

5.94

8.89

5.62

5.14

5.56

5.87

5.94

8.7

5.07

4.95

Pep.
count 

15

17

19

13

11

13

8

13

4

7

5

14

9

4

6

6

10

13

Protein 
score  

352

646

482

435

376

299

265

301

77

74

310

426

323

60

309

313

460

473

Protein 
score 
C. I. % 

100

100

100

100

100

100

100

100

98.5

64.7

100

100

100

35.7

100

100

100

100

Total
ion 
score 

220

483

332

261

231

147

194

179

39
 

253

310

223

23

234

254

342

303

Total 
ion 
C. I. % 
100

100

100

100

100

100

100

100

45.3
 

100

100

100

0

100

100

100

100

Average 
ratio 

1.82

1.83

1.66

2.3

2.5

2.85

2.79

1.56

-2.67

1.92

2.39

1.93

2.5

2.23

-3.05

-4.65

4.3

1.99

Accession
 no. 

gi|77735757 

gi|78369344 

gi|174840786 

gi|148676266 

gi|148676266 

gi|14124960 

gi|119576011 

gi|4139395 

gi|156120505 

gi|15639943 

gi|194674718 

gi|148676266 

gi|26355849 

gi|77735827 

gi|156120505 

gi|7555818 

gi|114585016 

gi|14124960 

Table 1. Continued
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Top ranked protein 
name (species)

TUBB2C protein 
	 [homo sapiens] 
PREDICTED: 
	 similar to 

ENSANG
	 P00000002667 

[bos taurus] 
PREDICTED: 
	 similar to 

ENSANG
	 P00000002667 

[bos taurus] 
ACP1 protein 
	 [bos taurus] 
	 heat shock 
	 protein, alpha-

crystallin-related,
	 B9 [bos taurus] 
PREDICTED: 
	 similar to 

Acrosomal 
protein SP-10 

	 precursor 
(acrosomal 
vesicle protein-1) 
isoform 3 [Ca

acrosomal vesicle 
protein 1 [bos 
taurus] 

Alpha enolase [bos 
taurus] 

Chain B, refined 
1.8 angstroms 
aesolution crystal 
structure Of 
porcine epsilon-
trypsin 

Chain B, refined 
1.8 angstroms 
resolution crystal 
structure Of 
porcine epsilon-
trypsin 

Outer dense fiber 
of sperm tails 2 
[bos taurus] 

PREDICTED: 
heat shock 
60kDa protein 
1 (chaperonin) 
[bos taurus] 

plasma glutamate 
carboxypeptidase 
precursor [bos 
taurus] 

Chain A, the 
refined three-
dimensional 
structure of cat 
muscle (M1) 
pyruvate kinase, 
at a resolutio

Ratio bull 
C/bull A

2.2

2.08

2.18

-1.91

1.94

-1.67

1.24

-1.4

-2.07

-2.14

1.07

1.13

1.07

1.6

Ratio bull 
D/bull B

2.29

1.35

1.52

-1.97

2.15

-1.32

-1.63

-1.37

-2.09

-2.88

1.46

1.06

2.41

2.37

Protein 
MW 

25858.4

19864.8

19864.8

18156.9

16773.2

26598.9

28934.4

47247.3

8813.5

8813.5

75450.6

74984.7

51646.3

57877.9

Protein 
PI 

4.95

5.62

5.62

6.71

8.22

5.08

4.53

6.44

6.67

6.67

7.52

9.05

5.55

7.23

Pep.
count 

10

6

6

12

8

6

7

8

2

2

20

23

11

19

Protein 
score  

258

276

286

282

476

101

113

154

119

104

373

1,060

453

178

Protein 
score 
C. I. % 

100

100

100

100

100

100

100

100

100

100

100

100

100

100

Total
ion 
score 
140

212

222

142

355

53

55

105

96

79

282

865

389

64

Total 
ion 
C. I. % 
100

100

100

100

100

99.2

99.6

100

100

100

100

100

100

99.9

Average 
ratio 

2.24

1.71

1.85

-1.94

2.04

-1.49

-0.19

-1.38

-2.08

-2.51

1.26

1.09

1.74

1.98

Accession
 no. 

gi|14124960 

gi|194674718 

gi|194674718 

gi|148744160 

gi|94966950 

gi|73954519

gi|115495399 

gi|4927286 

gi|999627 

gi|999627 

gi|84000345 

gi|119888228 

gi|115495837 

gi|157833510 

Table 1. Continued
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Top ranked protein 
name (species)

Glyceraldehyde-
3-phosphate 
dehydrogenase, 
spermatogenic 

	 [bos taurus] 
Tektin 3 
	 [bos taurus] 
Tektin 3 
	 [bos taurus] 
Tubulin, alpha 1a 
	 [mus musculus] 
Chain A, 

cytochrome Bc1 
complex from 
bovine 

5'-nucleotidase, 
cytosolic IB [bos 
taurus] 

actin-like 7A [bos 
taurus] 

PREDICTED: 
	 similar to actin-

related protein 
T1 (ARP-T1) [bos 

	 taurus] 
actin-related 

protein T2 [bos 
taurus] 

WBP2 N-terminal 
like [bos taurus] 

PREDICTED: 
	 similar to sp32 
	 [bos taurus] 
PREDICTED: 
	 similar to sp32 
	 [bos taurus] 
PREDICTED: 
	 similar to sp32 
	 [bos taurus] 
PREDICTED: 
	 similar to 

voltage-
dependent anion 
channel 2 [equus 
caballus] 

Tyrosine 
	 3-monoox
	 ygenase/
	 tryptophan 

5-monooxy
	 genase activation 

protein, zeta 
polypeptide 

	 [homo sapi 
3-oxoacid CoA 

transferase 2 [bos 
taurus] 

PREDICTED: 
	 similar to leucine 

rich repeat 
containing 37A 

	 [bos taurus] 

Ratio bull 
C/bull A

1.1

1.04

1.04

2.5

1.29

1.42

1.88

1.56

2.35

2.22

-7.14

-14.1

-4.52

-2.33

3.7

-56.7

1.27

Ratio bull 
D/bull B

1.89

2.73

-4.64

2.51

2.46

1.35

-1.25

1.91

-1.11

-1.64

3.07

7.21

2.73

-1.07

1.3

1.1

-6.7

Protein 
MW 

43260.3

56645.5

56645.5

49927.6

49181.3

63970.7

48984.7

42103.3

41886.4

31945.6

61196.7

61196.7

61196.7

31524.5

27695.8

55973.1

280818.2

Protein 
PI 

8.32

6.42

6.42

4.97

5.46

8.8

6.29

5.39

5.48

5.61

5.11

5.11

5.11

7.46

4.73

7.15

4.87

Pep.
count 

19

28

26

14

25

20

21

14

20

6

9

9

11

6

8

3

5

Protein 
score  

596

661

571

452

845

416

610

306

470

288

362

422

509

96

130

76

102

Protein 
score 
C. I. % 

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

98.4

100

Total
ion 
score 

422

414

363

317

588

261

427

202

281

248

301

354

454

63

40

45

91

Total 
ion 
C. I. % 
100

100

100

100

100

100

100

100

100

100

100

100

100

99.9

65.6

75.5

100

Average 
ratio 

1.49

1.88

-1.8

2.5

1.87

1.38

0.31

1.73

0.62

0.29

-2.03

-3.44

-0.89

-1.7

2.5

-27.8

-2.71

Accession
 no. 

gi|110626121 
 

gi|149773556 
 
gi|149773556 

gi|6678465 

gi|4139392 

gi|84370143 

gi|84370183 

gi|61878077 

gi|84000199 

 
gi|126723634 
 
gi|194666681 
 

gi|194666681 
 

gi|194666681 
 

gi|149689995 

gi|68085578 
 

gi|148223655 
 

gi|194676234 

Table 1. Continued
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Top ranked protein 
name (species)

Chain A, 
	 12-Bromodo
	 decanoic acid 
	 binds Inside 
	 the Calyx of 
	 bovine beta-

lactoglobulin 
Seminal vesicle 

secretory 
	 protein 109 
	 [bos taurus] 
Chain A, bull 
	 seminal plasma 
	 Pdc-109 
	 fibronectin 
	 type Ii module 
Phosphodi
	 esterase 6D, 
	 cGMP-specific,
	  rod, delta [bos 

taurus] 
Sperm 
	 acrosome 
	 associated 3 
	 [bos taurus] 
PREDICTED: 
	 similar to 

Thioredoxin 
	 domain-
	 containing 
	 protein 5 
	 precursor 

(thioredoxin-l
	 ike protein p 
seminal vesicle 

secretion 8 
	 [bos taurus] 
PREDICTED: 
	 similar to sp32 
	 [bos taurus] 
PREDICTED: 
	 similar to sp32 
	 [bos taurus] 
PREDICTED: 
	 similar to 

thioredoxin 
	 domain-
	 containing 
	 protein 5 
	 precursor 

(thioredoxin-
	 like protein p 
Chain A, crystal 

structure of apo-
bovine alpha-
lactalbumin

Ratio bull 
C/bull A

1.85

1.55

1.34

-1.6

3.37

-1.23

3.03

-3.18

2.63

-1.32

1.27

Ratio bull 
D/bull B

-4.32

-3.42

-2.87

-1.95

-1.1

-7.94

-2.32

-1.1

-1.49

-5.99

-5.52

Protein 
MW 

18355.4

15470.2

12787.8

17378.8

18086.8

39011.2

16129.7

61196.7

61196.7

39011.2

14176.8

Protein 
PI 

4.76

4.91

5.08

5.57

5.87

5.56

4.9

5.11

5.11

5.56

4.8

Pep.
count 

12

8

9

4

2

6

6

2

4

6

7

Protein 
score  

612

557

610

223

127

50

175

142

95

50

218

Protein 
score 
C. I. % 

100

100

100

100

100

0

100

100

100

0

100

Total
ion 
score 
463

457

516

197

107

 

117

131

81
 

139

Total 
ion 
C. I. % 
100

100

100

100

100
 

100

100

100
 

100

Average 
ratio 

-1.23

-0.93

-0.76

-1.77

1.13

-4.58

0.35

-2.14

0.57

-3.65

-2.12

Accession
 no. 

gi|6980895 

gi|47564036 

gi|20663779 

gi|27806061 

gi|157279923 

 
gi|194223000 

gi|28849949 

gi|194666681 

gi|194666681 
 

gi|194223000 

gi|12084466 

Table 1. Continued
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Top ranked protein 
name (species)

Sperm acrosome 
associated 5 [bos 
taurus] 

PREDICTED: similar 
to sp32 [bos 
taurus] 

Protease, serine, 
2 [rattus 
norvegicus] 

Thioredoxin 
domain 
containing 3 
(spermatozoa) 
[bos taurus] 

Acrosomal vesicle 
protein 1 [bos 
taurus] 

Ratio bull 
C/bull A

-1.26

-1.48

1.63

-1.34

1.27

Ratio bull 
D/bull B

-2.45

-2.51

1.27

-1.49

-2.08

Protein 
MW 

17568.2

61196.7

25942.7

46889.1

28934.4

Protein 
PI 

5.55

5.11

4.71

4.94

4.53

Pep.
count 

4

6

1

17

6

Protein 
score  

127

563

68

269

100

Protein 
score 
C. I. % 

100

100

87.2

100

100

Total
ion 
score 

91

535

61

134

60

Total 
ion 
C. I. % 

100

100

99.6

100

99.9

Average 
ratio 

-1.85

-1.99

1.45

-1.42

-1.41

Accession
 no. 

gi|94966873 

gi|194666681 

gi|6981420 

gi|114053199 

gi|115495399 

Table 1. Continued

Table 2. Ingenuity Canonical Pathways using IPA. The IPA results of canonical pathways were obtained using the 2D-DIGE 
data and sorted by the significance level of the canonical pathways. A total of 47 canonical pathways with their 
p-value and related proteins were represented here

Ingenuity canonical pathways
Glycolysis/gluconeogenesis
14-3-3-mediated Signaling
Propanoate metabolism
Purine metabolism
Mitochondrial dysfunction
Aldosterone signaling in 

epithelial cells
Germ cell-sertoli sell junction 

signaling
Phenylalanine, tyrosine and 

tryptophan biosynthesis
Gap junction signaling
Riboflavin metabolism
Sertoli cell-sertoli cell 

junction signaling
Breast cancer regulation by 

stathmin1
Protein ubiquitination 

pathway
Galactose metabolism
Cell cycle: G2/M DNA damage 

checkpoint regulation
Retinol metabolism
β-alanine metabolism
Phototransduction pathway
Cysteine metabolism
Protein kinase a signaling
Myc mediated apoptosis 

signaling
Butanoate metabolism
ERK5 signaling
Pyruvate metabolism
Valine, leucine, and isoleucine 

degradation
PDGF signaling
Aminosugars metabolism
TR/RXR activation
Axonal guidance signaling

Moleculeslog (p-value)
4.96E00
3.05E00
2.43E00
2.05E00
1.72E00
1.59E00

1.58E00

1.57E00

1.56E00
1.5E00
1.48E00

1.42E00

1.19E00

1.18E00
1.17E00

1.17E00
1.14E00
1.09E00
1.09E00
1.06E00
1.05E00

1.04E00
1.02E00
9.99E-01
9.99E-01

9.69E-01
9.69E-01
8.96E-01
8.9E-01

4.55E-02
2.46E-02
3.51E-02
1.11E-02
1.47E-02
1.23E-02

1.24E-02

5.88E-02

1.19E-02
5E-02
1.05E-02

9.95E-03

7.41E-03

2.33E-02
2.04E-02

2.27E-02
2.13E-02
1.79E-02
1.89E-02
6.27E-03
1.64E-02

1.67E-02
1.59E-02
1.52E-02
1.52E-02

1.37E-02
1.41E-02
1.12E-02
4.71E-03

PGK2,ENO1,GAPDHS,LDHAL6B
TUBB2C,YWHAZ,TUBA3C/TUBA3D
LDHAL6B,ACADS
NT5C1B,HSPD1,PDE6D
SOD2,CYC1
HSPB9,HSPD1

TUBB2C,TUBA3C/TUBA3D

ENO1

TUBB2C,TUBA3C/TUBA3D
ACP1 (includes EG:11431)
TUBB2C,TUBA3C/TUBA3D

TUBB2C,TUBA3C/TUBA3D

HSPB9,HSPD1

LALBA
YWHAZ

NT5C1B
ACADS
PDE6D
LDHAL6B
YWHAZ,PDE6D
YWHAZ

ACADS
YWHAZ
LDHAL6B
ACADS

ACP1 (includes EG:11431)
PDE6D
ENO1
TUBB2C,TUBA3C/TUBA3D

Ratio
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Ingenuity canonical pathways
IGF-1 signaling
Nicotinate and nicotinamide 

metabolism
Type I diabetes mellitus 

Signaling
PI3K/AKT signaling
p70S6K signaling
Fatty acid metabolism
Cardiac β-adrenergic 

signaling
Relaxin signaling
Pyrimidine metabolism
Oxidative phosphorylation
Acute phase response 

signaling
RAR activation
Ephrin receptor signaling
NRF2-mediated oxidative 

stress response
ERK/MAPK signaling
cAMP-mediated signaling
Role of macrophages, 

fibroblasts and endothelial 
cells in rheumatoid arthritis

G-Protein coupled receptor 
signaling

Moleculeslog (p-value)
8.34E-01
8.26E-01

7.95E-01

7.61E-01
7.47E-01
7.47E-01
7.2E-01

7.14E-01
6.94E-01
6.86E-01
6.29E-01

6.2E-01
6.15E-01
6E-01

5.92E-01
5.38E-01
4.11E-01

2.48E-01

9.62E-03
9.9E-03

8.55E-03

7.52E-03
7.87E-03
8.06E-03
7.19E-03

6.9E-03
7.09E-03
6.94E-03
5.81E-03

5.65E-03
5.1E-03
5.26E-03

5.05E-03
4.65E-03
3.04E-03

1.92E-03

YWHAZ
NT5C1B

HSPD1

YWHAZ
YWHAZ
ACADS
PDE6D

PDE6D
NT5C1B
CYC1
SOD2

NT5C1B
ACP1 (includes EG:11431)
SOD2

YWHAZ
PDE6D
PRSS1/PRSS3

PDE6D

Ratio
Table 2. Continued

Table 3. Networks created by IPA analysis. The data obtained from the 2D-DIGE analysis were analyzed using IPA software 
and sorted by the significance level of the networks. The interactions of the proteomics were generated by over-
laying the first and the second networks

Top functions
Free radical scavenging, cancer, 

hematological disease

Cellular assembly and 
organization, cellular 
development, embryonic 
development

Carbohydrate metabolism, small 
molecule biochemistry, antigen 
presentation

Cell-to-cell signaling and 
interaction, reproductive 
system development, and 
function, cellular development

Embryonic development, 
endocrine system development 
and function, organ 
development

AARS,ACADS,ACP1 (includes 
EG:11431),ACPP,Akt,Alpha 
tubulin,CD3, CENPJ, 
CYC1,Cytochrome 
c,ENO1,Enolase, 
ERK1/2,GZMK, HSP, HSPB9, 
HSPD1,Jnk,LALBA, mannitol, 
MLXIP,ODF1,PACS2,PEBP4,PI3K 
(complex), PRSS1/PRSS3, 
SIRT3,SOD2,TAOK2,TPD52 
,TUBA3C/TUBA3D, TUBB1, 
TUBB2C,Tubulin, YWHAZ

ACRV1,ACTL7A,Odf2,YBX2

A2M,SPACA3

Gstp1 (includes others),WBP2NL

HNF1A,PGCP,TGFB1 (includes 
EG:21803)

33

9

3

3

3

Focus molecules
13

3

1

1

1

Molecules in networkScore
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Top functions
Cell cycle, cellular compromise, 

cellular growth and 
proliferation

RNA damage and repair, gene 
expression, RNA post-
transcriptional modification

Drug metabolism, lipid 
metabolism, small molecule 
biochemistry

Genetic disorder, neurological 
disease, cell morphology

Cell death, liver necrosis/cell 
death, cellular movement

Neurological disease, genetic 
disorder, organismal injury and 
abnormalities

Cell-to-cell signaling and 
interaction, cellular assembly 
and organization, tissue 
development

ACRBP,NUMA1,progesterone

HNRNPD,L-lactate 
dehydrogenase,LDHAL6B

5'-nucleotidase,NT5C1B,RDH

CACNA1E,E2F4,E2f,EFHC1,TEX11,V
oltage Gated Calcium Channel

ATP,GAPDHS,glyceraldehyde-3-
phosphate dehydrogenase (pho
sphorylating),HSPA2,MAPK3,MI
TF,NTHL1,SH3BP4

APP,Crem,DNMT3A,DNMT3B,FGF
2,MAPT,PAPOLB,PBX4,PDPK1,PG
K2,Pgk,PSEN1,SP3,UBC

3',5'-cyclic-GMP 
phosphodiesterase,3',5'-cyclic-
nucleotide phosphodiesterase, 
ARL1,ARL2, ARL3,ARL15, 
C9orf25, Ca2+,CDC42,CETN3,G
RK1,GRK7,HRAS,KRAS,NRAS,Pd
e,PDE6 d),PDE6D,PTGIR, RAB13, 
RAB18, RAD23A, RAP1A,RAP2B, 
RHEB,RHOA,RHOB, RND1,RPGR

3

3

3

2

2

2

2

Focus molecules
1

1

1

1

1

1

1

Molecules in networkScore
Table 3. Continued

statistically significant by enriching above the 
threshold as shown (Figure 3a). Based on the DAVID 
software, glycolysis/gluconeogenesis is the first 
cluster with 3.17 of enrichment score and enolase 1 
was the first significantly expressed protein in this 
pathway (Figure 3b) the same pathway was also 
confirmed by IPA as significant (p<0.0001) in the 
canonical pathway (Figure 3a).
	 Additionally, free radical scavenging and cellular 
assembly or organization, cellular development, and 
embryonic development networks were identified 
to be first and second networks, respectively 
(Table 3). The first and second networks had a ratio 

containing focused molecules over score; 13/33 and 
3/9, respectively. Based on the IPA results, most of 
the proteins in our sperm proteomics data were 
found to be enzymes with important functions. 
Their locations and functions were listed in Table 
4. The final interactome was created by overlaying 
the two networks mentioned earlier (Figure 4) by 
selecting differentially expressed two proteins: 
outer dense fiber of sperm tails 2 (ODF-2) from the 
first network and manganese superoxide dismutase 
(SOD) from the second network. According to 
2D-DIGE results, MnSOD was 4.65 times more 
abundant in spermatozoa from relatively higher 
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Figure 3. IPA canonical pathways and proteins of cluster 1 by DAVID. (a) this figure shows 12 canonical pathways generated 
using IPA, which were statistically significant by enriching above the threshold (out of 47). The bars in the graph 
represent the total molecules involved in these pathways while the ratio (yellow line) shows the proteins given 
for each pathway in the data, (b) the glycolysis is shown to be the first cluster of functional gene annotation 
according to DAVID bioinformatics tool. In this figure, the horizontal axis demonstrates the functions of the 
related proteins that are represented in the vertical axis

b
 enolase 1, (alpha)

lactate dehydrogenase A-like 6B
phosphoglycerate kinase 2
glyceraldehyde-3-phosphate dehydrogenase spermatogenic
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Table 4. Protein cellular locations and physiology. The locations and functions of the detected sperm proteins detected 
were generated using IPA analyses

Id Symbol
ACADS
ACP1 (includes EG:11431)
ACRBP

ACRV1
ACTL7A
ACTRT1
ACTRT2
C15orf26
EFHC1
ENO1

GAPDHS

HSPB9
IZUMO4
LDHAL6B
NT5C1B
Odf2
PDE6D

PEBP4
PGCP

PGK2
PRSS1/PRSS3

SOD2
SPACA3
TEKT3
TUBA3C/TUBA3D
TUBB2C
WBP2NL
YWHAZ

acyl-CoA dehydrogenase, C-2 to C-3 short chain
acid phosphatase 1, soluble
acrosin binding protein

acrosomal vesicle protein 1
actin-like 7A
actin-related protein T1
actin-related protein T2
chromosome 15 open reading frame 26
EF-hand domain (C-terminal) containing 1
enolase 1, (alpha)

glyceraldehyde-3-phosphate dehydrogenase, 
spermatogenic

heat shock protein, alpha-crystallin-related, B9
IZUMO family member 4
lactate dehydrogenase A-like 6B
5'-nucleotidase, cytosolic IB
outer dense fiber of sperm tails 2
phosphodiesterase 6D, cGMP-specific, rod, 

delta
phosphatidylethanolamine-binding protein 4
plasma glutamate carboxypeptidase

phosphoglycerate kinase 2
protease, serine, 1 (trypsin 1)

superoxide dismutase 2, mitochondrial
sperm acrosome associated 3
tektin 3
tubulin, alpha 3c
tubulin, beta 2C
WBP2 N-terminal like
tyrosine 3-monooxygenase/tryptophan 

5-monooxygenase activation protein, zeta 
polypeptide

77735757
148744160
194666681

115495399
84370183
61878077
84000199
115495817
76650703
4927286

110626121

94966950
156120505
78369344
84370143
84000345
27806061

77735827
115495837

174840786
6981420

7555818
157279923
149773556
6678465
14124960
126723634
68085578

Cytoplasm
Cytoplasm
Extracellular 

Space
Cytoplasm
Nucleus
Cytoplasm
unknown
unknown
Cytoplasm
Cytoplasm

Cytoplasm

Cytoplasm
unknown
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm

Cytoplasm
Extracellular 

Space
Cytoplasm
Extracellular 

Space
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm
Cytoplasm

enzyme
phosphatase
other

other
other
other
other
other
other
transcription 

regulator
enzyme

other
other
enzyme
phosphatase
other
enzyme

other
peptidase

kinase
peptidase

enzyme
enzyme
other
other
other
other
enzyme

Entrez gene name Location Type(s)

fertility bulls (Bulls A and B) compared to that from 
their lower fertility counterparts (Bulls C and D) in 
the experimental population. On the other hand, 
ODF2 protein was up regulated in spermatozoa from 
low fertility animals (Bulls C and D) although their 
expression levels varied in the individual bulls. The 
average of protein expression ratios obtained from 
relatively lower fertility bulls (Bulls C and D) over 
high fertility bulls (Bulls A and B) (Table 1).

3.4. Sperm Proteins as Fertility Markers and 
Likely Protein-Protein Interaction
	 In search for potential fertility markers, we have 
determined sperm proteins that have been identified in 
this study and through the literature search. The fertility 
makers are mainly chromatin/nuclear proteins, seminal 
plasma proteins, proteins in acrosome, proteins which 
regulate ATP synthesis, capacitation related proteins, 
and sperm cytoskeletal proteins (Table 5).
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Figure 4. The merged interactome by IPA Networks 1 and 2. The final interactome was created by overlaying of these two 
networks free radical scavenging and cellular assembly or organization, cellular development, and embryonic 
development networks. The proteins and their interactions between others including as well as their locations 
in the cell are also included in the figure. The red and green colors of each protein represent up-regulated and 
down-regulated proteins in spermatozoa from lower fertility bulls (Bull C and D), respectively
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Table 5. Comparison of sperm protein markers reported among different bovine species belonging to different categories 
of sperm physiology pathways in current literature

Category of 
protein
Sperm 

chromatin 
proteins

Seminal 
plasma 
proteins

Acrosomal 
proteins

ATP 
synthesis 
proteins

Capacitation 
proteins

Protamines (PRM)

HIST1H2BA/ TH2B

H3K27ac

H3K27me3

Osteopontin

Acrosomal 
tyrosine-
phosphorylated
proteins

IZUMO1

Adenylate kinase 1 
(AK1)

Enolase 1 (ENO1)

ATP synthase
H+ transporting 
mitochondrial F1 
complex β subunit 
(ATP5B)
Na+/K+-ATPase

No reports

No reports

No reports

No reports

No reports

No reports

No reports

No reports

No reports

No reports

No reports

Holstein
(Fortes et al. 2014; 
Dogan et al. 2015)

Holstein
(Kutchy et al. 
2017)

Holstein
(Kutchy et al. 
2018)

Holstein
(Kutchy et al. 
2018)

Holstein 
(Cancel et al. 
1997; Cancel et al. 
1999)

Japanese
Black cattle 
(Harayama et al. 
2010)

Japanese
Black cattle 
(Fukuda et al. 
2016)

Holstein (D’Amours 
et al. 2012)

Hanwoo
(Park et al. 2012)

Holstein (Peddinti et 
al. 2008)

Holstein 
	 (Thundathil et al. 

2006)

Substitute for histones in the sperm chromatin 
spermatid to sperm development phase of 
spermatogenesis. They compact sperm DNA 
into a highly condensed, stable and inactive 
complex

Testis specific histone variant specifically 
required to direct the transformation of 
dissociating nucleosomes to protamine in 
male germ cells

Functions as histone acetyltransferase and 
regulates transcription via chromatin 
remodeling. Acetylates all four core histones 
in nucleosomes

Catalytic subunit of the PRC2/EED-EZH2 
complex, which methylates 'Lys-9' (H3K9me) 
and 'Lys- 27' (H3K27me) of histone H3, 
leading to transcriptional repression of the 
affected target gene

Binds tightly to hydroxyapatite and appears 
to form an integral part of the mineralized 
matrix. Probably important to cell-matrix 
interaction

Role in acrosomal formation of spermatids 
during spermiogenesis

Fusion of sperm to egg plasma membrane

Catalyzes the reversible transfer of the terminal 
phosphate group between ATP and AMP. 
Plays an important role in cellular energy 
homeostasis and in adenine nucleotide 
metabolism

Multifunctional enzyme, plays part in 
glycolysis, plays a part in various processes 
such as growth control, hypoxia tolerance 
and allergic responses. May also function 
in the intravascular and pericellular 
fibrinolytic system due to its ability to serve 
as a receptor and activator of plasminogen 
on the cell surface of several cell-types 
such as leukocytes and neurons. Stimulates 
immunoglobulin production

ATP synthesis and hydrolysis of proton 
transport

Its role is to create the electrochemical 
gradient of sodium and potassium, providing 
the energy for active transport of various 
nutrients

Angus bull 
sperm

Protein name Holstein and other 
bovine bull sperm

Function
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4. Discussion

	 Molecular and cellular attributes of sperm 
are important for fertilization, egg activation and 
embryonic development. Some bulls that produce 
high numbers of spermatozoa with normal 
morphology exhibit low fertility after hundreds 
of AI (DeJarnette and Marshall 2005). Despite the 
importance of male fertility in reproduction for 
both basic and applied science, there is no sufficient 
method to determine sperm quality other than 
conventional semen analysis. Indeed, traditional 
approaches to estimate male fertility such as 
evaluating of sperm morphology and motility might 
not be accurate all the time (Bartoov et al. 1993). 
Molecular mechanisms of how male fertility can be 
fully determined by evaluating the sperm quality 
still remain a mystery. The objective of this study 
was to identify differentially expressed proteins in 
spermatozoa from bulls with different fertility taking 
advantage of both wet lab and computational biology 
and bioinformatics approaches.
	 While proteomics is an important high-
throughput method providing a panoramic view of 
proteomes in the cell, bioinformatics is a powerful 
approach to predict and discover the functions and 
interactions of the given proteins. Sperm proteome 
profiling has been reported in human (Martinez-
Heredia et al. 2006; Li et al. 2007), in murine (Cao 
et al. 2006; Baker et al. 2008a, 2008b), in porcine 
(van Gestel et al. 2007) and in bovine (Lalancette 
et al. 2006; Peddinti et al. 2008; D'Amours et al. 
2010) and results generated by these researchers 
provided important insights about identities of 

diverse proteins. Previously, expressions of nine 
proteins, including two isoforms of epididymal 
sperm-binding protein E12 and proteasome subunit 
α type-6, were shown to be differentially expressed 
among high and low fertility Holstein bulls. Recently, 
using sperm from low vs. High fertility bulls, three 
proteins; enolase (ENO1), voltage dependent anion 
channel 2 (VDAC2), and ubiquinol-cytochrome-c 
reductase complex core protein 2 (UQCRC2) were 
detected to be the fertility markers in bulls (Park 
et al. 2012; Park et al. 2013; Kwon et al. 2015a). Our 
group previously showed that the expression of 
certain proteins in spermatozoa from high-fertility 
Holstein bulls was implicated in energy metabolism, 
cell communication, spermatogenesis, and cell 
motility (Peddinti et al. 2008). However, according to 
our literature search, sperm proteomics profiling of 
Angus bulls has been elusive.
	 In our study reported here, there were more 
than 80 sperm protein spots that notably differed 
among the bulls with varying fertility. By comparing 
the protein spot sequences to the databases, we 
identified most of these proteins. Our 2D-DIGE 
results demonstrated that ODF2 was up-regulated in 
spermatozoa from relatively low fertile bulls (Bulls 
C and D). ODF2 is a cytoskeletal structural protein in 
spermatozoa and it is abundantly present in flagella. 
Thus, it is associated with sperm morphology and 
motility, and that its absence or decreased expression 
leads to abnormal morphology and infertility 
(Petersen et al. 1999; Wang et al. 2014; Yoon et al. 
2016). The structure of ODF2 protein is an α-helical 
and is similar to leucine zipper motif (Brohmann 
et al. 1997). Three or four testis-specific transcripts 

Table 5. Continued
Category of 
protein
Cytoskeletal 

proteins

Other 
proteins

Outer dense 
protein fiber 2 
(ODF2)

Super oxide 
dismutase (SOD)

Current 
study

Current 
study

Holstein
	 (Petersen et al. 

1999; Wang et al. 
2014)

Holstein
	 (Bansal and 

Bilaspuri 2008)

A major component of sperm tail outer 
dense fibers (ODF). ODFs are filamentous 
structures located on the outside of the 
axoneme in the midpiece and principal piece 
of the mammalian sperm tail and may help 
to maintain the passive elastic structures 
and elastic recoil of the sperm tail. May have 
a modulating influence on sperm motility. 
Functions as a general scaffold protein that is 
specifically localized at the distal/subdistal 
appendages of mother centrioles

Destroys radicals which are normally produced 
within the cells and which are toxic to 
biological systems

Angus bull 
sperm

Protein name Holstein and other 
bovine bull sperm

Function
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of odf2 gene have been detected in rat and bull 
spermatozoa (Brohmann et al. 1997; Schalles et al. 
1998) and mutations in odf2 gene are known to result 
certain tail abnormalities in spermatozoa (Tarnasky 
et al. 2010). Previously, ODF2 and Cenexin were 
shown to be the alternative splice variants of exon 
3b of odf2 in mouse testis (Huber et al. 2008). Our 
results from the 2D-DIGE experiments demonstrated 
the importance of ODF-2 in sperm motility and 
ultimately bull fertility and the results are supported 
by (Cao et al. 2006). Protein variations can be induced 
by additional posttranslational modifications such 
as phosphorylation, cleavage, and glycosylation 
(Flickinger et al. 2001). Indeed, our results showed 
that many of the differentially expressed protein 
spots corresponded to ODF2, suggesting the possible 
posttranslational modifications (PTM) occurring 
in this protein. For example, it was revealed that a 
tyrosine phosphorylation in sperm ODF2 took place 
during capacitation (Mariappa et al. 2010). 
	 The other protein of significant function was SOD 
based on our 2D-DIGE and bioinformatics results. 
The SOD is an important antioxidant that dismutase 
O2− into H2O2, improves cell survival by reducing 
the level of ROS. It is plausible that this increased 
expression of SOD reflects a defensive response to 
protect the spermatozoa against oxidative stress 
(Mruk et al. 2002; Fujii et al. 2003; Cui et al. 2008; 
Yoon et al. 2016). The SODs are scavenger antioxidants 
catalyzing the neutralization reaction of superoxide 
radicals into H2O2 and oxygen in the cell. Because 
of the cytoplasmic reduction and environmental 
changes, spermatozoa become vulnerable to 
oxidative stress in the course of spermatogenesis 
(Agarwal and Prabakaran 2005). On the other hand, 
SOD has also a protective effect against oxidation, 
enhancing sperm motility (Lindemann et al. 1988; 
Kobayashi et al. 1991). Likewise, there was an increase 
in sperm motility and viability and a decrease in the 
LPO levels when bull spermatozoa were subjected 
to Mn2+ treatment in presence of oxidative stress 
(Bansal and Bilaspuri 2008).
	 Another study showed that the expression of 
MnSOD in bovine blastocysts increased when the 
culture media was supplemented with fetal calf 
serum (FCS), which could improve cryotolerance of 
these blastocysts (Rizos et al. 2003). In addition, it was 
suggested that SOD activity in bovine spermatozoa 
might be a metabolic indicator of membrane integrity. 
Since the same study revealed a correlation between 

malondialdehyde production and SOD activity, 
measuring this enzyme in spermatozoa might predict 
oxidative stress-induced damage (Beconi et al. 1991). 
In contrast, a study concluded that male infertility 
was not related to the SOD activities in both human 
spermatozoa and seminal plasma where the semen 
was obtained from men with normozoospermia and 
oligoasthenozoospermia (Hsieh et al. 2002). However, 
fertility scores of human patients were not as reliable 
as those obtained from livestock animals. In another 
study, the MnSOD activity in human spermatozoa 
was detected to be negligible. However, compared 
to human blood plasma, the abundance of total SOD 
activity in the seminal plasma was 20 times higher. 
According to the same study, it was concluded that 
the minimal activity of SOD enzymes in spermatozoa 
might be the reason of its protection against internal 
and external superoxide radicals (Peeker et al. 1997).
	 We established here that MnSOD was up-
regulated in spermatozoa from relative higher 
fertile bulls (Bulls A and B) compared to their low 
fertile counterparts based on the 2D-DIGE results. 
Therefore, these differentially expressed proteins 
could potentially play key roles in spermatozoa 
and may be involved in male fertility and could be 
used to predict superior sires (Kwon et al. 2015a, 
2015c). We concluded that the abundance of SOD in 
spermatozoa differs among the bulls with different 
fertility in a given population. This might be an 
indicator of excessive oxidative stress caused by 
cryopreservation or centrifugation in spermatozoa, 
affecting sperm motility and ultimately male fertility.
	 Protein based molecular markers provide reliable 
information about the elite sire as well as its progeny. 
However, comparing Angus cattle across other 
cattle breeds especially Holstein for recognizing the 
protein molecular markers for sire selection, we find 
no report for Angus. Different categories of sperm 
associated proteins are chromatin/nuclear proteins, 
seminal plasma proteins, proteins in acrosome, 
proteins which regulate ATP synthesis, capacitation 
related proteins, and sperm cytoskeletal proteins. 
We have report about the sperm chromatin related 
proteins as potential markers for selection (Fortes 
et al. 2014; Dogan et al. 2015; Kutchy et al. 2017; 
Kutchy et al. 2018) out of all these reported proteins 
no reports are available for Angus cattle one of the 
well reputed cattle breed in the USA. Therefore, 
we realize urgent need of selection of Angus bulls 
based on protein as markers of selection and hence 
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dire need to report the potential protein markers in 
Angus sperm and related proteins.
	 In conclusion evaluating semen quality and 
predicting bull fertility are vital for precision livestock 
agriculture. With the increasing uses of artificial 
insemination bull effects on herd is becoming more 
prevalent. Low heritability of the fertility traits 
implies that much of the differences in bull fertility 
are related to environment, management, nutrition 
and epigenetics. As such, sperm functional genomes 
such as proteomes reflect sperm fertility, and the 
differentially expressed proteins in high fertility 
vs. Low fertility can be harnessed as potent fertility 
markers in sperm evaluation and marker assisted 
selection. There is a need for reliable phenotypic 
data in order to identify such fertility markers. 
Compared to the dairy cattle, there is a disparity of 
phenotypic data in beef cattle. To remedy this, beef 
producers should collect phenotypic data and keep 
records including the pedigree information. Through 
comparative biology, sperm fertility proteins 
identified in dairy bulls can be studied to determine to 
what extent the protein markers can be used for beef 
bulls. Sperm protein markers can be combined with 
other sperm parameters and used as complementary 
tests in genomic selection. Comprehensive studies 
aimed at sperm functional genome and epigenome 
in larger sample sizes during the entire year for 
multiple years are expected to further fundamental 
science and technology of bull fertility.
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