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1. Introduction
  

 In general, intensive use of synthetic insecticides 
can cause the development of a resistant population 
of Nilaparvata lugens Stal. (Hemiptera: Delphacidae). 
Resistance to insecticides defined as ‘a heritable 
change in the sensitivity of a pest population that 
is reflected in the repeated failure of an insecticide 
product to achieve the expected level of pests control 
when used according to the label recommendation 
doses for that pest species (Insecticides Resistance 
Action Committee (IRAC) 2013, 2021; Baehaki et al. 
2016). Resistant insects are formed because of the 
selection process, which causes an increase in the 
resistant population through the development of the 

biochemical detoxification mechanism (Dono et al. 
2010; Khan et al. 2020). Cases of Nilaparvata lugens 
resistance led to the banning of some insecticides 
for use with rice plants in 1986 and more recently 
in 2015 by the Indonesian government. The active 
ingredients prohibited are included in the group 
of organophosphates (24 active ingredients) 
and carbamate (carbaryl, methomyl and kartap 
hydrochloride). Suggest that insect resistance to 
insecticides is a common problem in many countries 
(Liu et al. 2005). Study resistance of N. lugens to 
insecticides in China and Bangladesh indicate that 
N. lugens has been resistance to several insecticides 
that are imidacloprid (resistance ratio, RR = 2491.0–
8078.5-fold), thiamethoxam (RR = 303.6–1253.6-
fold), buprofezin (RR = 175.7–365.1-fold) and 
dinotefuran (RR = 49.9–596.0-fold), low to moderate 
levels of resistance to nitenpyram (RR = 12.1–67.3-
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fold) and sulfoxaflor (RR = 3.8–25.5-fold) (Datta et 
al. 2021). According to the latest record in Arthropod 
Pesticide Resistance Database (APRD), it have been 
reported that were 445 cases of N. lugens that were 
resistant to insecticides throughout the world (APRD 
2021).
 Insecticides with active ingredient of fenobucarb 
(carbamat) and imidacloprid (neonicotinoid) are 
registered in Indonesia to control N. lugens (Directorate 
of Fertilizers and Pesticides 2016). Fenobucarb 
(carbamate) is an insecticide that inhibits the action 
of the enzyme Acetylcholinesterase (AChE) (Casida 
and Durkin 2013), while imidacloprid (neonicotinoid) 
has a neuroexcitatory effect and irreversibly blocks 
the acetylcholine receptor (Cox 2001; Tan et al. 2008).
  Cases of N. lugens resistance to both insecticides 
have been widely reported. N. lugens from populations 
in Serang, Karawang, Subang, Indramayu, Purbalingga 
and Pasuruan (Indonesia) had resistance ratio (RR) 
values to imidacloprid of 4.8-108.1 times. The levels of 
resistance to fenobucarb were 6.6 in Indramayu, while 
in Karawang, Subang, Purbalingga and Pasuruan the 
RR values were 2.5-3.00 (Surahmat et al. 2016). The 
populations of Sukamandi and Juwirig were resistant 
to imidacloprid (RR = 12.7, RR = 7.0), but susceptible 
to fenobucarb (RR = 1.8, RR = 3.3) (Baehaki et al. 2016). 
Unfortunately, no information about biochemical 
mechanism of N. lugens resistance reported from these 
area of studies, besides never yet tested the botanical 
insecticide against the resistant insect that will be 
evaluated in this research. An effective handling of 
resistance involves the initial detection of problems, 
the combination of information on resistant insects, 
and determination of resistance ratio data, so that 
appropriate selection of insecticides can be made 
(Haque et al. 2002).
 There are several strategies to manage N. lugens 
resistance, one of which is the rotation of the 
applied insecticides with those that have different 
modes of action (Hastutiek and Fitri 2002). The use 
of a broad spectrum of botanical insecticides with 
various modes of action, such as  neem (Azadiracta 
indica) seed oil, is one alternative. Neem oil, which 
acts by hormonal disruption, can inhibit or delay the 
development of instars, disrupt the moulting process, 
and disrupt ovarian development (Suryaningsih and 
Hadisoeganda 2007; Pathak and Tiwari 2017). Based 
on this background, the study aims to 1) monitoring 
and determine the level of resistance of N. lugens 
from Cipunagara (Subang, West Java, Indonesia) 

to fenobucarb and imidacloprid, 2) to evaluates 
the specific enzyme activities of AChE, Glutation 
S-Transferase (GST) and esterase to determine the 
biochemical mechanism of N. lugens resistance, and 
3) to determine sensitivity of resistant N. lugens to 
the botanical insecticide formulation of neem oil that 
never been studied before.
  
2. Materials and Methods
 
2.1. Plants, Insects, and Insecticides
 The test insects used were N. lugens, which were 
obtained from Banyuwangi (the standard population) 
and Cipunagara (the field population). The standard 
population of N. lugens was obtained from the Indonesian 
Center for Rice Research (ICRR) and had been reared 
in a greenhouse for 35 generations without exposure 
to insecticides. The field population was taken from 
Padamulya Village, Cipunagara District, Subang Regency 
in July 2018. The rice plants used for the maintenance 
and testing of N. lugens were IR64 varieties. 
 The test insecticides used contained the active 
ingredient fenobucarb (BPMC) 500 gL-1 in the form 
of an emulsifiable concentrate (EC) formulation, and 
imidacloprid 200 gL-1 in the form of a soluble concentrate 
(SC). Fenobucarb has mode of action as acetylcholine 
inhibitor (class 1A: carbamat), while imidacloprid as 
Nicotinic acetylcholine receptor (nAChR) competitive 
modulators (class 4A: neonicotinoid) (Directorate of 
Fertilizers and Pesticides 2016; IRAC 2021). The botanical 
insecticide used was neem oil 500 gL-1 in the form of 
an EC formulation (azadirachtin content 133.80±24.91 
mgL-1) (Dono et al. 2017). Five series of concentrations 
and controls were tested for each insecticide. Distilled 
water was mixed with an emulsifier (alkyl aryl polyglycol 
ether 400 mg.L-1) (Agristic®) at a concentration of 0.5 
ml.L-1 (Dono et al. 2010). The control N. lugens was 
treated only with distilled water with the addition of 
emulsifiers at the same concentration.

2.2. Resistance Diagnosis
 Resistance diagnosis was conducted to detect 
the N. lugens of the Cipunagara population (field 
population) that were resistant to insecticides. From 
this population, 200 and 60 N. lugens were taken as 
test insects and control respectively. The concentration 
of the insecticide tested was obtained from the LC95 
of the Banyuwangi population (standard population). 
The tests were performed using the residual method 
(leaf dipping method) that will do as described in 
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testing the N. lugens resistance level to the insecticide. 
Furthermore, the number of individuals that survived 
over the expected proportion (5%) was calculated using 
a one-way Z test (Roush and Miller 1986) (Equation 
1).

 The value of the resistance level was calculated 
using Equation 3 (Georghiou 1962; Dono et al. 2010):

 Furthermore, the minimum number of individuals 
that survived to reach the significant level was 
calculated using Equation 2:

Z = Eq.1(s - ng) - 0.5

ng (1 - g)√
Where: 
s = number of individuals which survive 
n  = sample size (namely 200 individuals) 
g  = percentage of individuals surviving 
    expectations in standard strains (0.05)

s = Z √(ng (1 - g) + ng + 0.5 Eq.2

2.3. Testing of the Resistance Level of N. lugens 
 The N. lugens population from Cipunagara 
was exposed to fenobucarb and imidacloprid to 
determine its resistance level. The test used five 
levels of concentration and a control, which were 
repeated at least three times on 20 N. lugens adult 
female test insects per repetition (Heong et al. 2011). 
The experiment employed the leaf dipping method 
(residual method in plants /contacts).
 The method used refers to Surahmat et al. (2016) 
and was based on IRAC test method number 005. 
Ten–twelve day old rice seedlings were cleaned with 
water to remove any soil. A total of 10 rice plants 
were wrapped in two sheets of wet tissue paper, put 
in a plastic tube (5 cm in diameter, 5.5 cm in height), 
given a 1% (w/v) water-agar solution 37 to cover the 
roots, and left until settled. Subsequently, all parts 
of the rice were dipped for 10 seconds into the test 
insecticide solution, dried for 15 minutes, and placed 
into a cylindrical plastic cage with a diameter of 5 cm 
and a height of 20 cm. Then 10 adult N. lugens females 
were put into the cage. Mortality due to fenobucarb 
exposure was recorded at 24 and 48 hours, while for 
imidacloprid exposure was recorded at 24, 48, and 72 
hours (IRAC 2013). The correlation of concentration 
and mortality data were analyzed using the Polo Plus 
Version 1.0 application to obtain the LC50 and LC95 
values.

Resistance Ratio (RR) =
LC50 field population 

LC50 standard 
population 

Eq.3

 Insect populations originating from the field 
were considered to be resistant if they have an RR 
≥4 (Winteringham 1969; Surahmat et al. 2016), with 
indications that resistance had occurred if the RR ≥1  
(Surahmat et al. 2016).

2.4. Biochemical N. lugens Resistance Mechanism 
Analysis
 Samples of adult female test insects were 
homogenized at low temperature with a concentration 
of 100 mg/ml in 0.1 M phosphate buffer pH 7.0 using 
Potter-Elvehjem homogenizer. This was used as the 
stock solution. The homogenate was centrifuged at 
10,000 rpm for 1 minute and the supernatant taken 
quickly so that the sediment did not dissolve again. 
For enzyme activity assay and protein determination, 
the stock solution was diluted when it was required. 
For control of enzyme activity assay, the sample were 
heated at 90°C for 10 minutes (Dono et al. 2010; Burden 
2012).

2.4.1 Asetilkolinesterase Activity (AChE) Assay
 The method for AChE assay was based on the 
method proposed by Ellman et al. (1961) and Dono et 
al. (2010). 200 μl of the sample was added into a 10 
ml test tube  with 2 ml of 0.1 M phosphate buffer pH 
7.5 and 150 μl of 0.0011 M DTNB in the same buffer. 
100 μl of insecticide with varying concentrations 
(buffer solution used as control) was then added to 
the tube and homogenized, followed by 10 minutes of 
incubation at 37°C. 100 μl of 0.0105 M acetylcholine 
iodide was then added to the mixture. Subsequently, 
the mixture was incubated for 30 minutes at 37°C. The 
absorbance was measured using a spectrophotometer 
at λ = 412 nm. Enzyme activity was determined based 
on the absorbance increase at a wavelength of 412 nm, 
and was defined as an increase in absorption of 0.001 
units of absorbance above the control, per ml of the 
enzyme tested per minute. The activity is calculated 
using equation (5). The percentage inhibition of 
acetylcholinesterase activity by the insecticide was 
then calculated by Equation 4.

% Inhibition = x 100%
Ao – A1

Ao

Eq.4
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Where: 
A0 = control of acetyl cholinesterase 
    (M substrate/minute/mg protein) control 
    (without insecticide)
A1 = acetyl cholinesterase activity with 
    insecticide treatment

Where:
AU  = activities Unit
As = absorption of samples tested
Ak = aontrol absorption (Boiled samples)
ti = incubation time (30 minutes)
Ve   = volume of enzyme tested: AchE (0.2 ml), 
    esterase (0.05 ml) and GST (0.02 ml)

 Furthermore, the relationship between insecticide 
concentration and inhibition of AChE enzyme activity 
was analyzed using probit analysis Polo Plus Version 1.0. 
From this relationship, IC50 (inhibition concentration 
at 50%) was obtained, which showed a 50% reduction 
in AChE activity.

2.4.2. Esterase Activity Assay
 The esterase activity was measured using α-naphthyl 
acetate as substrate (Yu et al. 2003; Dono et al. 2010). 
0.5 ml of 0.1 M phosphate buffer solution pH 7.0, and 
then 15 μl α-naphthyl acetate 0.02 M (dissolved in 
methanol) and 2 ml fast blue solution 0.25 mg/ml in 
distilled water was then added to 50 μl of the sample. 
The mixture was then incubated at 37°C for 30 minutes 
and the absorption measured at λ = 490 nm and used 
to calculate the activity of the enzyme. As a control, the 
same sample, which had been heated at a temperature 
of 90°C for 10 minutes and centrifuged, was used. 
Enzyme activity was calculated using Equation (5). The 
enzyme activity was determined based on increased 
absorbance at 490 nm and was defined as an increase 
in absorption of 0.001 units of absorbance above the 
control, per ml of the enzyme tested per minute.

AU = 
As - Ak

0.001 x ti x Ve Eq.5

2.4.3. Glutathione S-Transferase Activity Assay
 Glutathione S-Transferase activity used a 1-chloro-
2,4-dinitrobenzene (CDNB) as substrate. 0.86 ml of 
0.1 M phosphate buffer pH 6.5, 20 μl homogenate, 
100 μl 10 mM glutathione in pH buffer 6.5, and 10 μl 
1 mM CDNB (in ethanol) were mixed in a test tube 
and incubated at 37°C. Next, light absorption was 
measured by a spectrophotometer at λ = 340 nm and 

enzyme activity calculated using Equation (5). This was 
determined based on the increased absorbance at 340 
nm and defined as an increase in absorption of 0.001 
units of absorbance above the control, per ml of the 
enzyme tested per minute (Habig et al. 1974; Dono et 
al. 2010).

2.5. Testing of N. lugens Susceptibility to 
Botanical Insecticide
 The N. lugens populations from Cipunagara and 
Banyuwangi were tested for their susceptibility 
to neem oil insecticide (formulation 50 EC). The 
experiment used the food dipping method (residual 
method on plants), as explained in the testing of 
the level of fenobucarb and imidacloprid insecticide 
resistance. In the susceptibility testing of N. lugens to 
neem oil insecticide, nymph 4th instar was used, with 
observations of death made at 24-hour intervals for 
10 days. The data were analyzed using the Polo Plus 
Version 1.0 program to obtain the LC50 and LC95 values. 
In this susceptibility test, a resistance ratio (RR) was 
used as an indicator for insect susceptibility to neem 
oil insecticide. If RR <1, this means that the insects are 
sensitive to the insecticide (Dono et al. 2014).

3. Results

3.1. Detection and Resistance Level
3.1.1. Resistance Detection 
 Resistance diagnosis was performed as the first 
step to find N. lugens resistance from the Cipunagara 
population. The proportion of individuals that 
survived after the application of fenobucarb 
(carbamate) and imidacloprid (neonicotinoid) 
was 0.0786 and 0.1419 respectively (Table 1). Both 
figures are greater than the minimum proportion of 
surviving individuals, which is 0.0778. This indicates 
that N. lugens from Cipunagara has developed 
resistance to fenobucarb and imidacloprid. 
Therefore, further investigation of the resistance 
level is needed to determine the resistance ratio 
(RR) against the test insecticide.
 
3.1.2. Level of Resistance
 The results of the fenobucarb and imidacloprid 
insecticide toxicity tests indicated a relationship 
between the concentration of insecticide and 
the mortality of the insects. The treatment with 
fenobucarb insecticide of the N. lugens population 
from Cipunagara (the field) showed that the LC50 



and LC95 values were 0.85 ml/L and 2.73 ml/L 
respectively. These toxicity value were higher than 
for the Banyuwangi population (standard) (LC50 0.35 
ml/L and LC95 2.01 ml/L). The results of the toxicity 
test of imidacloprid insecticides on N. lugens from 
the Cipunagara population (field) showed that this 
insecticide had LC50 and LC95 value of 7.95 ml/L and 
54.11 ml/L respectively. The toxicity of imidacloprid 
insecticides on the N. lugens population from 
Banyuwangi (standard) was much lower, namely 
0.57 ml/L and 4.07 ml/L for LC50 and LC95 respectively 
(Table 2).
 Based on the calculation of the resistance ratio, 
the population of Cipunagara was already resistant 
to imidacloprid insecticides, with a ratio of 13.95, 
and it has also showed indications of resistance 
to fenobucarb insecticides, with a resistance 
ratio of 2.43 (Table 2). The high resistance ratio to 
imidacloprid was probably caused by the intensive 
use of this insecticide by farmers in the sampling 
location. The low level of resistance to fenobucarb 
was because farmers rarely used this insecticide. 
They usually rotate insecticides if any are found to 
be ineffective. 

3.2. Analysis of Enzyme Activity
3.2.1. Acetylcholinesterase Activity Analysis
 The activity of the acetylcholinesterase enzyme 
(AChE) was tested to observe the effect of fenobucarb 
(carbamate) insecticide on the activity of the AChE 

enzyme and its resistance to the insecticide. The test 
results showed that the activity of the AChE from 
the Cipunagara population was higher than that of 
the Banyuwangi population, at 4.67 and  2.76 units/
mg respectively (Figure 1). 
 When fenobucarb was applied, AChE-specific 
activity decreased in line with the increasing 
concentration of the insecticide used. The linear 
regression between insecticide concentration and 
enzyme specific activity is presented by equation y 
= -5.5486x + 3.4275 and y = -0.9254x + 5.7858, for 
AChE-specific activity from the Banyuwangi and 
Cipunagara populations respectively. The correlation 
coefficient in both populations was r = 0.98, which 
indicates a very strong relationship between the 
insecticides inhibition and enzyme activity (Figure 
1). The decrease in enzyme activity is also shown by 
the inhibition of the AChE by the insecticides (Figure 
2). 
 The effect of the fenobucarb insecticide on the 
inhibition activity of AChE  showed that the resistance 
level of N. lugens to the fenobucarb insecticide was 
related to the insensitivity of the AChE enzyme. 
The level of AChE enzyme insensitivity of the N. 
lugens from the Cipunagara (field) population to 
fenobucarb was 2.61 times that of Banyuwangi 
(standard) population) (Table 3). This value of 
insensitivity of the enzyme was similar to the level 
resistance to fenobucarb (Table 2), which indicates 
that the main mechanism of fenobucarb insecticide 
resistance was related to the AChE.

3.2.2.Esterase Activity
 An esterase enzyme activity test was conducted 
to determine its role as one of the detoxification 
enzymes of N. lugens. The enzyme test results 
show that the esterase-specific activity in the 
Banyuwangi population (standard) was higher than 
that of the Cipunagara (field) population. Specific 
esterase activity from the N. lugens population of 
Banyuwangi was 187.20 units/mg, while for that of 
Cipunagara it was 168.41 units/mg. The difference 

Table 1. Proportion of survival of N. lugens after treatment 
with LC95 of the Banyuwangi standard population

Significantly different from the expectation at the 95% real 
level (the minimum proportion to reach the real level is 
≥0.0778)

Population

N. lugens 
population of 
Cipunagara

Insecticides

Fenobucarb
Imidakloprid

Proportion of individuals 
surviving in LC95 

insecticide treatment

0.0786
0.1419

Table 2. The resistance ratio of 500 g/L fenobukarb insecticide and 200 g/L imidacloprid against  N. lugens originated from 
Cipunagara population (field) and Banyuwangi (standard)

a: intercept, b: slope, SE: standard error, LC: lethal concentration (ml/l), CI: confidence interval, RR: resistance

Insectiside Population a±SE b±SE LC50 CI95% LC95 CI95% RR
Banyuwangi
Cipunagara

0.96±0.12
0.23±0.09

2.12±0.21
3.24±0.32

0.35
0.85

0.29 - 0.42
0.74 - 0.96

2.10
2.73

1.52 - 3.32
2.22 - 3.64 2.43

0.47±0.10
-1.78±0.21

1.92±0.18
1.98±0.19

0.57
7.95

0.46 - 0.70
6.45 - 9.72

4.07
54.11

2.84 - 6.71
38.41- 87.49

13.96Banyuwangi
Cipunagara

Fenobucarb 
(carbamat)

Imidacloprid 
(neonicotinoid)
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N. lugens Cipunagara population is susceptible to 
neem insecticide, with a resistance ratio of <1 (Table 
4).

4. Discussion

 In many countries indicates that Intensive using of 
insecticide causes insect resistance. Study resistance of 
N. lugens to insecticides in China indicate that N. lugens 
has develop high levels of resistance to imidacloprid 
(resistance ratio, RR = 2491.0 - 8078.5-fold), while in 
Bangladesh 3680.1 - 4430.8-fold) because of intensive 
using of insecticides (Datta et al. 2021). Differences in 
the toxicity values of insecticide can be caused by the 
excretion and metabolic rate  (Park et al. 1991). The N. 
lugens population of Ciasem and Sukamandi, Subang 
Regency is still susceptible to fenobucarb insecticides, 
with resistance ratios of 2.7 and 1.8  (Baehaki et al. 
2016; Surahmat et al. 2016). The N. lugens population of 
Cipunagara was resistant to imidacloprid insecticide,  
which is virtually in line with the report of Baehaki 
et al. (2016), that the population of Sukamandi is 
resistant, with a ratio of 12.7. Increased resistance 
due to exposure to imidacloprid insecticides can 
occur if continuous selection is carried out (Zhang 
et al. 2014). Selection using imidacloprid causes 
the resistance ratio of N. lugens to increase by 11.35 
times after 25 generations, and 14 times after 27 
generations (Zewen et al. 2003; Wang et al. 2008). 

in esterase enzyme specific activity between the 
two populations was 18.79 units/mg (Figure 3). That 
was indicated that esterase enzyme did not play in 
role of N. lugens resistance to fenobucarb. May be 
N. lugens develop another biochemical mechanism 
of resistance to this insecticide. The results show 
that the differences in esterase activity between 
the two populations cannot be used to explain the 
differences in the level of resistance of N. lugens to 
fenobucarb.

3.2.3. Activity of the Glutathione S-Transferase
 Glutathione S-transferase (GST) activity was 
tested to determine the role of the enzyme in the 
resistance of N. lugens to insecticide. The test result 
of the specific GST enzyme activity in the N. lugens 
population from Cipunagara (field) was 1010.02 
units/mg, higher than the specific activity of the 
GST N. lugens population of Banyuwangi (standard) 
(909.10 units/mg). The difference in GST-specific 
activity between the two populations was 100.92 
units/mg (Figure 4). The results of the GST specific 
activity test show that GST was one of the resistance 
mechanisms that occurred in the N. lugens of the 
Cipunagara population.

3.3. N. lugens Susceptibility to Neem Oil 
Insecticide
 The results of the toxicity test of the neem oil 
insecticide using the leaf-stem dipping method gave 
LC50 values of 3.68 ml/L and 3.61 ml/L against the N. 
lugens populations of Banyuwangi and Cipunagara. 
The results of the resistance ratios indicate that the 
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However, if the selection is stopped, this can cause 
a rapid decline in resistance, from 759 times to 114 
times after 17 generations, until it finally stabilizes, 
but will increase again when selection is continued 
(Wang et al. 2009). Insect migration also significantly 
increases the level of resistance, because of the use of 
imidacloprid extensively and intensively in the field 
(Wang et al. 2008). Similar result showed by research of 
Diptaningsari et al. (2020) that is continuous selections 
with imidacloprid during five generations of selection 
increased the resistance ratio (RR) from 46.20-fold 
to 150.39-fold. The resistance will be decrease if the 
selection pressure removed. Therefore, the unstable 
resistance insect can be managed by using insecticide 
with different mode of action.
 AChE acts as a terminator in the transmission of 
impulses at the cholinergic synapse by hydrolyzing the 
neurotransmitter acetylcholine (ACh) (Dvir et al. 2010). 
Molecule target of inhibition of insecticide Carbamat 
group like fenobucarb is AChE (IRAC 2013, 2021). The 
values of asetylcholinesterase (AChE) insensitivity 
and fenobucarb resistance level are almost the 
similar (Tables 2 and 3). This indicates that the main 
mechanism for fenobucarb insecticide resistance is 
possibly in the insensitivity of AChE (Yoo et al. 2002; 
Toumi et al. 2016). According to study with chlorpyrifos-
oxon treatment showed that AChE activity of earwigs 
collected from conventional practice higher than in 
organic and IPM orchards (Navenant et. al. 2019). This 
indicating the insect from organic and IPM ochard were 
more sensitive than from conventional ones. AChE 
activity in resistant strains is higher than susceptible 
strains (Taşkin et al. 2007). It has been shown that the 
N. lugens population from Cipunagara (field) had AChE 
enzyme insensitivity 2.67 times greater than that of 
the N. lugens from Banyuwangi (standard).
 Esterase activity can be associated with insect 
resistance. It can be detected using a substrate such 
as the original ester; for example, α- or β-naphthyl 
acetate. Resistance can be associated with an increase 
or decrease in naphthyl esterase activity (Devonshire 
1991). Naphthyl esterase is a product formed from 

the reaction of α-naphthyl acetate substrates, an 
enzyme source, and fast blue dye (used in this study). 
In Asperen's (1962) study, diazo blue-sodium lauryl 
sulphate was used to estimate the formation of naphthyl 
products. The use of insecticides is strongly correlated 
with increased naphthyl esterase activity (Taşkin et al. 
2007). Based on this explanation, the esterase-specific 
activity in the N. lugens of the Cipunagara population 
should be higher than that of Banyuwangi (standard). 
However, in this study, the N. lugens field population 
did not show higher esterase-specific activity than 
standard. 
 Increased esterase activity does not always 
correlate with resistance status (Siegfried and Scott 
1992). Differences in enzyme activity are likely to 
occur because of by differences in the genes in each 
population (Tarwotjo and Rahadian 2018). There is 
no correlation between changes in esterase activity 
between strains with imidacloprid resistance (Wang 
et al. 2009). Significantly lower levels of ali-esterase 
activity have not been found to be associated with 
carbamate resistance in Culex tarsalis (Plapp et al. 
1961). The absence of the role of specific esterase 
enzymes in fenobucarb and imidacloprid insecticide 
resistance may also be caused by the development of 
other enzyme detoxification systems in the N. lugens 
population of Cipunagara. The main route of carbamate 
insecticide metabolism in animals is oxidative and is 
generally associated with the MFO enzyme (Futuko 
1990). In addition, increased monooxygenase 
cytochrome P450 activity is the main mechanism of 
imidacloprid resistance in insects  (Zewen et al. 2003; 
Wang et al. 2009; Puinean et al. 2010).
 The GST activity of the N. lugens population of 
Cipunagara (field) was higher than that of Banyuwangi 
(standard). It was found that GST acts as one of the 
mechanisms of N. lugens resistance to fenobucarb 
(carbamates) and imidacloprid (neonicotinoid) 
insecticides. Increased GST activity has been associated 
with resistance to several major classes of insecticide 
and is associated with an increase in the number of 
one or more GSTs (Vontas et al. 2001; Nan-nan et al. 

Table 4. Susceptibility of N. lugens to neem oil insecticides

a: intercept, b: slope (slope), SE: standard error, LC: lethal concentration (ml/l), CI: confidence interval, RR: resistance ratio

Population a±SE b±SE LC50 (ml/l) LC95 (ml/l)CI95% CI95% RR

Banyuwangi 
(standard)
Cipunagara
 (field)

-3.48±0.37

-3.81±0.39

3.79±0.38

4.17±0.41

8.31

8.19

22.56

20.32
0.99

7.48 – 9.19

7.43 -9.01

18.78 – 29.30

17.23 – 25.59
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2006; Datta and Banik 2021). Moreover, Insects can be 
resistant because of selection toward of insect having 
effective detoxification mechanism. The difference 
may be because the samples tested develop a different 
detoxification system when exposed to different 
insecticides (Dono et al. 2010). This indicates that 
in a population exposed to different insecticides, 
organisms will develop different detoxification 
systems. In the N. lugens population of Cipunagara, 
one detoxification mechanism that contributes to the 
resistance to insecticides is GST enzyme activity. The 
result of resistance study in China and Bangladesh 
indicate that an increase GST activities and other 
detoxification enzymes (EST and P450) were found 
in multiple-resistant FY19 field population (Datta et 
al. 2021). GST is induced by neonicotinoid insecticide 
(Smina et al. 2016). Anopheles stephensi, which has 
been resistant to deltamethrin (pyrethroid), DDT 
(Dichloro-Diphenyl-Trichloroethane) and propoxur 
(carbamate) shows high GST activity  (Sanil et al. 2014). 
Hight activity of GST also indicated in Aphis gossypii 
and Aphis spiraecola populations against Imidacloprid, 
Dimethoate, Acephate, Quinalphos, Chlorpiriphos, 
Spinosad, and Thiamethoaxam (George et al. 2019). 
High GST activity in providing resistance by N. lugens 
is a result of protecting tissues from oxidative damage 
(Vontas et al. 2001; Maran et al. 2010). Therefore, study 
of sensitivity change of insecticide molecule target 
and activity of detoxification enzyme are important 
in strategy to control of insect resistance.
 The results of the insecticide susceptibility test of 
the N. lugens population of Cipunagara against neem 
oil showed an RR value of <1 (Table 4). The RR values 
indicate that the N. lugens of the Cipunagara population 
(field) are still susceptible to the insecticides. This 
result shows that an insecticide which works with a 
different mechanism to the insecticide applied can be 
used as a solution for handling resistance to certain 
insecticides. In this study, neem oil insecticides can 
be used on the N. lugens population of Cipunagara 
against imidacloprid (neonicotinoid) and fenobucarb 
(carbamate) insecticides. Neem plays a role in 
resistance management because it can reduce the rate 
of detoxification enzymes, making the insecticide more 
effective (Lowery and Smirle 2000; Mordue (Luntz) 
and Nisbet 2000). Besides causing growth disruption 
(Govindachari et al. 2000), neem oil can disrupt the 
central nervous system,  repel insects and inhibit feed 
(Mordue et al. 1998; Mordue (Luntz) and Nisbet 2000; 
Mardiningsih et al. 2010; Qiao et al. 2014). Principally, 
other botanical insecticides that have different action 

mechanisms or different modes of detoxification 
to the insecticides applied can be used to manage 
resistant populations. Plant extract may be used as 
an insecticide for controlling insect resistance, such as 
the bufadienolides group (i.e. daigremontianins, LD50 
0.9 μg/g of diet), extracted from Kalanchoe pinnata 
and K. daigremontiana (Hidayat et al. 2014). Further 
research is needed to explore the potency of botanicals 
insecticides to control of insect resistance to synthetic 
insecticides.
 In conclusions, the N. lugens population of 
Cipunagara (field) was indicated resistant to fenobucarb 
insecticide (resistance ratio (RR  = 2.43) but resistant to 
imidacloprid insecticides (RR = 13.95). The insensitive 
of the acetylcholinesterase (ACHE) of the N. lugens field 
population was considered to play in resistance the 
insect to the fenobucarb, and Glutathione S-Transferase 
(GST) against fenobucarb and imidacloprid. Thus, it is 
important to know the change of target sensitivity and 
metabolism pathway of insecticide in management 
resistance of insect. The field population of N. lugens 
is susceptible to neem oil insecticides, with a value 
of RR <1 (LC50 3.61 ml/l). Neem oil could be used as a 
solution for N. lugens resistance management against 
fenobucarb and imidacloprid insecticides.
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