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ABSTRACT

Given a large number of birds in the flock, we mathematically investigate 
the mechanism the birds move in a collective behavior. We assume that each 
bird is able to know its position and velocity of other birds within a radius of 
communication. Thus, to be able to fly in the flock, a bird has to adjust its position 
and velocity according to his neighbors. For this purpose, first of all, we analyze 
how the connectedness of the bird interaction network affects the cohesion of the 
stable bird flock. We further analyze a condition when the flock is vulnerable, 
which is mathematically indicated by means of the presence of an articulation 
point in bird communication network.
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1. Introduction

Our object of study is the flocking behavior during 
which the birds moving in a group and make whole 
decisions of flight autonomously in the absence of 
leader. Within the last few years, many researchers 
pay attention to mechanism of how birds flock rather 
than why. During the flock, actually more eyes of birds 
may increase the opportunities to find food, such as 
in a foraging, and improve the chances of detecting 
a predator as well. When a predator approaches the 
flock, all the individual birds react to move toward 
the safest position in order to reduce the chances of 
being captured.

Nowadays, in engineering, flocking can be seen as 
one of the simple collective behavior of individuals 
in a group. This collective behavior model is also well 
known as multi-agent systems, which attracts lots of 
attention with respect to engineering applications, 
for instance in formation control of robots and 
unmanned aerial vehicles (Olfati-Saber 2006; Tanner 
et al. 2007; Yang et al. 2010; Erfianto and Bambang 
2012; Williams and Sukhatme 2013). Very recently, 
the synthesis of dynamics of flocking model in the 
area of cooperative control have also been done by 
Viscek (Vicsek and Zafeiris 2012), and the Justh-
Krishnaprasad (Galloway et al. 2013). The agent is 

modeled as a particle, which moves with a certain 
velocity vector in the planar area Rn.

Motivated by Reynolds’s flocking model (Reynolds 
1987), lots of distributed algorithms have been 
developed for in term of cooperative control, for 
example in (Tanner et al. 2003). This model focus 
on cohesion of motion for a group of interconnected 
dynamic system. The stability analysis as well as 
the convergence proofs for the group cohesion 
have also been examined, such as to synchronize 
all individuals to reach the same velocity vectors 
based on the algebraic connectivity properties of the 
communication network (Liu and Passino 2004; Gazi 
and Passino 2011; Zavlanos et al. 2011; Sun 2013). 
Since then, researchers use graph theoretic approach 
that provides the fundamental tools for design and 
analysis of coordinated motion, especially inspired by 
dynamics of bird flock.

Recently, (Ghedini et al. 2015) investigated the 
robustness of network of multi-agent systems from 
the other point of view. They propose a mechanism 
for detecting the probability of an agent being 
disconnected. In their model, each individual agent 
is able to detect critical network topology and mitigate 
an agent in order to move to a new position to improve 
connectivity measure. A node that is potentially 
to be lost will cause disconnection of the whole 
communication network. Mathematically, this node 
is then defined as articulation points. Regarding this 
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property, the graph which has no articulation points 
is called biconnected graph (Ahmadi and Stone 2006).

In this paper, we address how can a bird, which 
is represented by an individual autonomous agent, 
move towards a stable flocking behavior, which 
means that the inter-individual distance is bounded by 
communication constraint, no collision among birds, 
and the flocking condition is achieved when individuals 
reach the same velocity vector asymptotically. This 
necessary condition will be examined in mathematical 
model. In the second part of this paper we address 
how can a bird detects a failure of individual bird, 
which will cause the flocking behavior disconnected.

2. Materials and Methods

In this section, some definitions on algebraic 
graph theory as the underlying theory of bird 
communication network will be briefly presented. 
We also recall some works on common flocking 
model in engineering.

2.1. Graph Theory
Suppose a bird makes communication over a hundred 

of individuals using sound and visual communication, 
and this communication pattern is then called flocking 
topology. We model flocking topology as undirected 
graph G = (V, E), where V = {ν1, ..., νn} is set of nodes 
(individual bird), and E = {(νi, νj) | i, j ∈ {1, 2, ..., n}} is set 
of edges (interaction among individual bird). Assume G 
is simple that is no self-loop (νi, νi) ∉ E and no multiple 
edge exist between (νi, νj). A graph G is regular graph 
if every node has exactly k communication edges, and 
we say that every node has degree k. The flocking 
topology G is then encoded by an n × n adjacency 
matrix, where aij >0 if (i, j) ∈ E, and aij >0 otherwise. 
The Laplacian matrix of a graph G is defined as L = 
DA, where A is adjacency matrix and D is degree of 
matrix A. The element of Laplacian matrix L is denoted 
by li. Due to the characteristic of Laplacian matrix, 
it can be seen that L has positive real eigenvalues 
for undirected graph G (Godsil et al. 2001). Denote 
λi(L) as the i-th eigenvalue, and νi(L) as an associated 
right eigenvector of Laplacian matrix L. Because of 
the symmetry of L, those the eigenvalues are real, and 
can be ordered as 0 = λ1(L) ≤λ2(L) ≤ ... ≤λn(L). Fiedler 
(Fiedler 1973) denotes that the connectivity measure 
of a communication graph G, or flocking topology in 
our case, is denoted by λ2 (L), which is well known 
as algebraic connectivity. Thus, it means that, the 

strong the graph connected the larger the algebraic 
connectivity it has. Thus, the topology of graph G is 
said to be robust.

2.2. Flocking: An Engineering Perspective
To have social interactions among group 

member during flock, thus it means that a bird 
has to communicate each other over a hundred 
of individuals, for instance using sound and 
visual communication. Meanwhile biologists 
investigated that many birds use the limited range 
of communication to form a flocking formation 
(Weiss et al. 2014). The other model also came from 
computer scientist and mathematicians. They study 
the collective behavior of bird flock is to model and 
study them using computer simulations. To the 
best of our know-ledge, the models are based on 
three distinct features of collective movement i.e., 
alignment of velocities, attraction, and short-range 
repulsion (Reynolds 1987). 

Consider the motion of individual bird in two-
dimensional space R2. Let qi = [xi yi]

T ∈ R2 be the 
vector position of individual bird i. Suppose all 
interaction among bird is assumed as undirected 
graph, that is the adjacency matrix element aij = aji. 
The neighborhood of bird agent i is bounded by Ni 

= {j ∈ V | qij ≤ d}, where qij the Euclidean distance 
between bird i and j, and d is maximum distance 
that enables paired-interaction between birds. The 
illustration of this model is depicted in Figure 1.

From engineering point of view, there are at least 
three multi-agent coordination and control problems 
(Gazi and Passino 2011), and bird flocking is similar to 
aggregation problem. Suppose there are N individual 
agents with the following position states qij ∈ R2, i = 1, 
.., N. Let      be the centroid  of group, i.e. the  average 
position of aggregation point, which is denoted as

theory it is a control input) ui, i = 1, ..., N to drive 
the agent in order to stay close in a group w.r.t. the 
centroid. Thus, the aggregation problem is how to 
model ui such that as t → ∞ for all agents, we have 
lim ||qi−   || ≤ dc, where dc is maximum distance to 
the centroid. Motion of flocking is mathematically 
modeled as attractive and repulsive function between 
two individual birds, which is comprehensively discussed 
in (Gazi and Passino 2004):

𝑥𝑥 = 1
𝑁𝑁∑𝑞𝑞𝑖𝑖

𝑁𝑁

𝑖𝑖=1
   . Each agent requires internal force (in control

x̄    

x̄    

𝑢𝑢𝑖𝑖 =  − ∑ ∇𝑞𝑞𝑖𝑖𝑗𝑗∈𝑁𝑁𝑖𝑖 [𝜙𝜙𝑎𝑎(‖𝑞𝑞𝑖𝑖−𝑞𝑞𝑗𝑗‖) − 𝜙𝜙𝑟𝑟(‖𝑞𝑞𝑖𝑖−𝑞𝑞𝑗𝑗‖)]   (1)
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Physically, qi ∈ R2 is the position of bird i in a two-
dimension coordinate frame. The notation of 
		   is to model a virtual force between 
two individual bird. This virtual force is intended to 
attract the neighboring bird as close as possible when 
it is too far away, while the notation of 			
is to model virtual repulsive force. The repulsive virtual 
force is intended to repel the neighboring bird when 
it is too close to each other, hence the collision can be 
avoided.

3. Results

The problem in this paper is how to model stable 
bird flocking behavior. For this purpose, we define 
stable flocking mechanism. Group of birds is said to 
achieve stable flock, when (1) inter-bird distance is 
stable such that flock is collision free, (2) all birds 
approach the same velocity vector asymptotically, and 
(3) the flocking topology is always connected, which 
is mathematically defined as:

where λ2 is the second smallest eigenvalue of 
Laplacian matrix L of bird communication topology 
and R is maximum distance of interaction between 
birds. We use mathematical approach in (Erfianto et al. 
2016) to model the bird flocking behavior that consists 
of inter-bird attraction-repulsion force, group centroid 

function from Equation 1, and bird velocity matching, 
which is defined in the following equation.

Our model should conform to criteria in Equation 
2 as necessary condition to stable flocking behavior. 
We use Lyapunov technique to check the stability of 
our flocking behavior model.  Let all terms in Equation 
3 is denoted as Pi and let V be Lyapunov candidate 
function such that:

To prove the stability of our flocking model, the 
same technique as described in (Erfianto et al. 2016) 
is used. The derivative of Equation 4 is obtained as:

where IN is identity matrix, and v is matrix of 
velocity vector. Regarding Lyapunov stability analysis, 
as t >0, if the derivative of Lyapunov candidate ≤0, it 
is asymptotically stable. This physically means that 
the birds in our model finally could reach the same 
velocity and no collision occurs as the necessary 
condition in Equation 2. Further, the connectedness 
of the flocking topology, which is represented in 
Laplacian matrix, directly affects the cohesion in the 
stable flock, such that λ2(L) >0 for all t >0.

The result of simulation of Equation 3 can be seen 
in Figure 2 and 3 that show the stable trajectory of 
bird flocking. The stability of flocking trajectory is 
also indicated by the second smallest eigenvalue, 
which is depicted by the plot of the second smallest 
eigenvalue in Figure 2 and 3.

4. Discussion

In this subsection, we use Theorem 1 and 2 in (Zareh 
et al. 2016) to check the vulnerability of our results in 
Equation 3 to 5 of bird flocking configuration network. 
Theorem 1 in (Zareh et al. 2016) proves the eigenvalue 
of perturbed of Laplacian matrix, while Theorem 2 
in (Zareh et al. 2016) is used to determine whether a 
node i is an articulation point or not by observing the 
minimum of third smallest eigenvalue of perturbed 
Laplacian matrix. Physically, when a bird in flock 
moves away from its neighboring birds, it affects to the 
topology of flocking formation, in other word flocking 

 ∇qi ϕa(ǁqi − qjǁ) 

 ∇qi ϕr(ǁqi − qjǁ)  

Figure 1. Bird Flocking with interaction model represented 
as undirected graph

0 < ‖𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑗𝑗‖  ≤  𝑅𝑅 
𝑣𝑣𝑖𝑖  =  𝑣𝑣𝑗𝑗
𝜆𝜆2  >  0

 { } (2)

𝑢𝑢𝑖𝑖 =  − ∑ ∇𝑞𝑞𝑖𝑖
𝑗𝑗∈𝑁𝑁𝑖𝑖

𝜑𝜑𝑎𝑎(𝑞𝑞𝑖𝑖𝑖𝑖) − ∑ ‖𝑞𝑞𝑖𝑖 − 𝑥̅𝑥‖
𝑗𝑗∈𝑁𝑁𝑖𝑖

+ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖(𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑗𝑗)  
𝑗𝑗∈𝑁𝑁𝑖𝑖

(3)

𝑉𝑉 = ∑ [𝑃𝑃𝑖𝑖(𝑞𝑞𝑖𝑖,𝑗𝑗) +
1
2 ∑[𝑣𝑣𝑗𝑗 − 𝑣𝑣𝑖𝑖]
𝑗𝑗∈𝑁𝑁𝑖𝑖

]
𝑗𝑗∈𝑁𝑁𝑖𝑖

 (4)

(5)𝑉̇𝑉= −vT (L ⊗ IN )v ≤ 0   



formation is perturbed. Thus, by using algebraic graph 
theory, it can be analyzed whether this moving bird is 
an articulation point or not that perturb the flocking 
formation. For instance, a predator can be considered as 
the external disturbance that may perturb the flocking 
formation.

During flock, the flocking network or flocking 
topology may change due to presence of predators. 
Therefore, the previous Laplacian matrix in Equation 
5 is perturbed by the external disturbance. The idea is 

how we can use perturbed Laplacian matrix to detect 
whether the flocking topology is vulnerable or not. 
If vulnerable, this will affect to the separation of the 
existing flocking topology.

To model the vulnerable of flocking topology, we 
can use the definition of articulation point in a graph 
G as described in (Ahmadi and Stone 2006). A bird 
that is modeled as a node i ∈ V of a connected flocking 
topology G is called an articulation point if a reduced 
graph GR ⊂ G is not connected. Thus, a connected graph 

Figure 2. Simulation of bird flocking. Left: trajectory of bird flock from initial position to reach a destination. Right: plot of 
bird position in 2 dimensions, third and second smallest eigenvalue of bird flocking formation
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G is called biconnected if G contains no articulation 
point.

Adopting the above concept into flocking behavior, 
we actually can detect whether a bird is an articulation 
point or not with respect to flocking topology.

1.   First of all, a bird may check the degree of interaction 
among the other birds, or mathematically equals 
to the degree of connectivity di. If the di is small 
enough, then continue to step 2.

2. Reduce the graph G into        that contains node i 
as a suspected articula-tion point.

3. Zareh in (Zareh et al. 2016) introduced perturbed 
Laplacian matrix Li(s) obtained from perturbed 
adjacency matrix in reduced graph GR. Thus, we 
can directly use Theorem 2 in (Zareh et al. 2016) 
to check whether the third smallest eigenvalue of 
reduced Laplacian matrix Li(s) satisfies:

where s ∈ R is real scalar value.
If Equation (6) holds, then the bird i in reduced flocking 

topology Gi meets the sufficient conditions for being non-
articulation point. Otherwise, if bird i is an articulation 
point, then the whole flocking topology is vulnerable 
though the robustness measure λ2(L) >0 of the graph G 
also holds for t >0. If there exist an articulation point, 
this physically means that a flocking topology may be 
separated easily, and a bird acts as an articulation point is 
easily being captured by a predator. To proof the concept 
of our approach, we also provide a simulation of flocking 
behavior, which is depicted in 2 and 3. It can be drawn 
from the simulation that the flocking model is stable, 
which is indicated by 0<λ2(L)<λ3(L). To check the existence 
of articulation, point that make the flocking formation 
dismiss, from Theorem 2 in (Zareh et al. 2016), it can be 
concluded that since the perturbed flocking formation 
causes perturbed λ2(L)<λ3(L), then the flocking formation 
contains no articulation point. Thus, the flocking formation 
is not vulnerable.

The result of simulation of Equation 6 is depicted by 
the plot of the third smallest eigenvalue in Figure 2 and 3.

5. Conclusion

We present the analytical model of bird flocking 
behavior using algebraic graph and control engineering 
theory. Regarding Lyapunov stability theory, which is 
commonly used in control engineering, our model is 

asymptotically stable. By observing the second smallest 
eigenvalue of Laplacian matrix of flocking topology, we 
can also observe the robustness of bird flocking behavior. 
However, since the second smallest eigenvalue of Laplacian 
matrix only measure the connectedness, the vulnerable of 
a flocking topology cannot be drawn from this measure. 
The use of perturbed Laplacian matrix of reduced flocking 
topology represents the presence of disturbance on the 
flocking behavior, and the third smallest eigenvalue of 
perturbed Laplacian matrix can be directly used to measure 
the vulnerability of the whole flocking formation.
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