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A reduction in population size due to land clearing and habitat fragmentation may have negative effects on plant
fitness. A relationship between population size and progeny performance for four small (n < 20 plants) and four large
(n > 100 plants) populations of Banksiailicifolia, a widespread but naturally fragmented speciesin south-western Australia, was
assessed. Seeds collected from the field were germinated and a compar ative growth study conducted in a greenhouse. After
six months, the survival rate of seedlings from larger populations was double (36%) that of smaller populations, while
germination rates and other measures of growth performance were independent of population size. The conservation and
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management implications of reduced fitness associated with small population size in B. ilicifolia are discussed.

Key words: population size effect, fragmentation, Banksia ilicifolia, growth study

INTRODUCTION

Ecosystem fragmentation and its consegquencesisamajor
threat to the persistence of many species (Henley et al. 1996;
Laurance & Bieregaard 1997; Whitmore 1997; Hobbs & Yates
2003). Dueto habitat destruction, many formerly widespread
species have become restricted to small and fragmented
populations (Fischer & Matthies1998). Small populationsare
more vulnerable to environmental stochasticity (Menges
19914a,b, 1992; Boyce 1992), and may suffer from adisruption
of important biotic relations, such as the frequency and
behaviour of pollinators, leading to lower per capita
reproductiverates (Allee effect) (Lamont et al. 1993; Olesen
& Jain 1994; Bond 1995; Groom 1998). Mating patterns, such
asthefrequency of selfing, may change and lead to inbreeding
and be expressed asinbreeding depression. Genetic variation
may be reduced compared with that of larger populations,
which may decrease plant fitness and population viability
(Ellstrand & Elam 1993; Nunney & Campbell 1993; Young et
al. 1996). Genetic drift can lead to rapid fixation of alleles,
which decreases genetic variation and the evolutionary
potential to adapt to environmental change (Falconer &
Mackay 1996).

A comprehensive understanding of the consequences of
reduced population size following fragmentation on plant
fitness is crucia for designing appropriate conservation-
management strategies. Despiteitsrelevanceto conservation
management, the relationship between population size and
fitness has been studied in very few plant species, typically
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annuals and in common garden experiments (Fischer &
Matthies 1998). While several fithess componentswere found
to be correlated with population size in Gentiana
pneumonanthe (Oostermeijer et al. 1994) and |pomopsis
aggregata (Heschel & Paige 1995), no clear trend with respect
to mean fitness and population size was detected in Salvia
pratensis (Ouborg et al. 1991), Scabiosa columbaria (van
Treuren et al. 1993) and Lychnis flos-cuculi (Hauser &
L oeschcke 1994). These contrasting results emphasize the
need for further research, particularly for poorly studied and
unigque landscapes such as south-western Australia, where
there are numerous narrowly distributed and naturally
fragmented plant speciesunder threat (Hopper & Gioia 2004).

In this paper, we assess the effect of population size on
progeny vigour in Banksiailicifolia (holly-leaved banksia-),
awidespread speciesin south-western Australiafound mainly
on the sandy coastal plain from Mt Lesueur to Augusta, and
east to Cordingup River between Albany and Bremer Bay
(Taylor & Hopper 1988). Although widespread, B. ilicifoliais
locally restricted to swales and wetland fringes with depth of
groundwater < 10 m (Groom et al. 2000; Groom 2004). Asa
conseguence, populations are naturally fragmented and
typically small (< 100 plants), although somelarge stands do
exist (Taylor & Hopper 1988). While naturally fragmented,
surviving popul ationswithin the Perth metropolitan areahave
become increasing isolated and small due to land clearing
with urbanization. Banksia ilicifolia is self-compatible, but
preferentially outcrossing, with marked inbreeding depression
at seed production, seed germination, and seedling growth
(Heliyanto et al. 2005). Plants flower intermittently in most
months of the year, with an apparent peak from winter to
spring. Fruit set following natural pollination isextremely low
(c. 0.04-1% of flowers setting fruit; Whelan & Burbidge 1980;
Lamont & Collins 1988; Heliyanto et al. 2005).
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Inthisstudy, we extend on our earlier research identifying
preferential outcrossing, inbreeding depression and heterosis
with wide outcrossing in B. ilicifolia (Heliyanto et al. 2005,
2006) and ask whether the offspring from large populations
outperform offspring from populations that are small and
isolated asaresult of land clearing and habitat fragmentation
with urbanization in the Perth metropolitan area. Our results
may have important implicationsfor the viability of recently
fragmented populations due to the negative genetic
consequences of reduced population size.

MATERIAL SAND METHODS

To assess the performance of progeny, a greenhouse
experiment was carried out between May and December 2005,
using seeds collected fromthefield. Four small, geographically
isolated, populations (< 20 plants) and four large populations
(> 100 plants) of B. ilicifolia within or near to the Perth
metropolitan areawere arbitrarily selected for thisstudy (Table
1.

Mature fruits (follicles) were collected from all plantsin
the small populations and an arbitrary selection of up to 30
widely spaced plants (> 10 m apart) from each large popul ation
in March 2005. Closed follicleswere heat-treated, by putting
them onto a hot frying pan to extract seeds. Germination
occurred in agrowth chamber at 15 °C under dim light on
two moistened Whatman filter papers in Petri dishes for
three weeks. Prior to germination, seeds were treated with
fungicide by soaking themina10% Previcur (a.i. Propamocarb
hydrochloride, Bayer CorpScience, USA) solution for
15 minutes. To maintain moisture content, water was added
every week. Each seedling was then transferred into a pot of
15 x 15 x 15 cm containing river sand. Pots were placed
randomly on three neighboring benchesin aclimate-controlled
greenhouse at the University of Western Australia (20/15 °C,
day/night, light intensities 65% ambient), and watered as
required. A dow-releasefertilizer (Osmocote 17N-1.6P-18.7K,
Scott), at adose of 10 g per pot, was applied to 4-month-old
seedlings. Plantswere maintained for another 2 monthsbefore
being harvested for growth measurements.

In an unplanned and uncontrolled element of the study
during the subsequent establishment period until harvest time
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in the greenhouse, seedlings were affected by damping-off
disease caused by a fungal pathogen. Mortality rates per
population, as a result of this stress, were assessed.

At harvest, remaining seedlings (Table 1) were severed at
the soil surface, and the bulk of the soil was carefully removed
to count the number of cluster roots produced per plant.
Measured growth traitsincluded number of leaves, oven-dry
mass (after 48 h at 70 °C) of roots and leaves and total |eaf
area (using aportableleaf areameter, L1-3000, Lincoln, NE,
USA). Measured other parameters included germination
percentage and seedling survival. Germination percentage
was estimated as number of germinated seeds/total number
of seeds x 100%. Seedling survival was determined on the
basis of the proportion of seedlingsremaining after 6 months
in the greenhouse.

Satistical Analysis. Statistical analysis was performed
using Statistica 6 (Statsoft Inc., Tulsa, OK, USA). Parametric
testswere performed after confirming homogeneity of variance
using Cochran’s C test or Levene'stest (Zar 1999). Effect of
population size on seed germination, and seedling survival
was evaluated using one-way ANOVA. Effect of population
size on growth components under common environment was
evaluated using a mixed model ANOVA (Zar 1999; Quinn &
Keough 2002), in which popul ationsweretreated asarandom
factor nested within afixed factor, population size. Sincethe
design was strongly unbalanced (Table 1), type Il MS was
used and the degrees of freedom were adjusted using
Satterthwaite’s method (Zar 1999). To test the possible
maternal influence on growth parameters, seed weight was
included as a covariate in the analysis. However, as it was
found to have no significant effect, it waslater excluded from
the analysis in order to strengthen the results. Effect of
population size on the proportion of cluster rooted plants
was tested using at test.

RESULTS

Seed Ger mination and Survival Rates. Seed germination
rate wasindependent of population size (F, ;= 0.32, P=0.59).
Inclusion of seed weight as a covariate did not change the
trend. All populations showed rel atively high seed germination
rates, ranging from 66 to 100%, with small and large

Table 1. Population sites description, sample numbers, germination and survival of Banksia ilicifolia from small and large populations. The
habitats of all small populations demonstrated a greater degree of disturbance than those of the large populations, as indicated by a weedy

understory

Population (# plants/pop) Longitude Latitude

Altitude No. of follicles No. of seeds No. of seeds germinated No. of seeds survived

(m) collected extracted (% germination) (survival %)

Small:
Beechboro/Reid (17) 3105148 115°5532° 75 64 54 52 (96) 8 (15)
Caporn St. (17) 31°4352° 115°4835 47 50 43 30 (70) 8 (27)
Chiquita Park (12) 3104527 115°4936° 72 42 38 38 (100) 4 (11)
Kensington Bushland (18) 31°51'48" 115°49'00° 50 30 37 37 (100) 6 (16)
Average (91.5) (17.3)

Large:
Harry Waring (> 100) 32010'48" 115°5032° 50 133 101 75 (74) 27 (36)
Pinjar (> 1000) 3104024°  115°4849° 27 25 15 10 (66) 5 (50)
Lancelin/Mimegara (> 1000) 31°01'05" 115°3207° 60 20 20 20 (100) 11 (55)
Rowe/Hopeland (>300) 32°2096° 115°54'51° 28 30 14 14 (100) 4 (29)
Average (86) (36)
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populations averaging 92% (+ 7.2) and 86% (+ 17.6),
respectively.

Following naturally infection, seedling mortality per
population ranged from 45 to 89% (Table 1). Seedling survival
was strongly affected by population size (F = 11.20, P <
0.005), and the mean percentage for large popul ations (36% +
6) was doublethat of small populations (17% + 4.1).

Growth. The mean number of leaves per seedling, leaf
area per seedling, and root and shoot dry mass per seedling
were independent of population size (Table 2; Figures 1la-d).
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For large and small populations respectively, mean (+ SE)
number of leaves per seedlingwas 14.62 (0.91) and 12.96 (1.0),
leaf areaper seedling was 70.6 (5) and 69.45 (7) and root dry
mass per seedling was 0.3 g (0.02) and 0.35 g (0.03) and shoot
dry massper seedlingwas 1.4 (0.5) and 1.5 (0.7). Inclusion of
seed weight as a covariate did not alter the trend.

The Caporn street popul ation produced ahigher proportion
of seedlings with cluster-roots (88%) than all other
populations. Fifty percent of seedlingsfrom the ChiquitaPark
population produced cluster roots, and 33% of Kensington

Tabel 2. Mixed model ANOVA results for different growth parameters of Banksia ilicifolia progeny grown for 6 months in river sand in a
greenhouse. DF error was computed using the Satterthwaite method (Zar 1999)

Source of variation Effect D.F.effect M.S.effect D.F.error M.S.error F P
Number of leaves
Population size Fixed 1 104.68 7.90 49.13 2.13 0.18
Population (PS) Random 6 52.49 66.00 34.32 1.53 0.18
Leaf area
Population size Fixed 1 289.40 11.42 677.48 0.43 0.53
Population (PS) Random 6 598.32 66.00 1026.29 0.58 0.74
Root dry mass
Population size Fixed 1 0.06 8.25 0.03 2.39 0.16
Population (PS) Random 6 0.03 66.00 0.02 1.30 0.27
Shoot dry mass
Population size Fixed 1 0.13 11.16 0.27 0.47 0.51
Population (PS) Random 6 0.24 66.00 0.40 0.61 0.72
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Figure 1. Growth performance of Banksia ilicifolia progeny across four small and four large populations grown for six months on river sand. CP:

Chiquita Park; CS: Caporn Street; KB: Kensington Bushland; BR: Beechboro Reid; LM: Lancelin Mimegara; HW: Harry Waring; RH:
Rowe Hopeland; PJ: Pinjar. Error bars represent standard errors. a. Number of leaves per plant; b. Leaf area per plant; c. Shoot dry mass
per plant; d. Root dry mass per plant.
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Park seedlings produced cluster roots. For all other
populations, percentages ranged from 9 to 25%. However,
the proportion of seedlings with cluster-roots was
independent of population size (t,=-1.71, P=0.14).

DISCUSSION

Small populations tend to be subject to an increased
probability of stochastic extinction over large populations,
due to demographic, environmental and/or genetic factors
(Shaffer 1981; Ellstrand & Elam 1993; Reed 2005). Inthe present
study, we found arate of mortality for seedlings sourced from
small populationsthat was twice as high asthat for seedlings
sourced fromrelatively large populations of B. ilicifoliawhen
subjected to stressful conditions. Seedlings from relatively
large populations possessed on average a higher resistance
to afungal pathogen than seedlings from relatively smaller
populations. Our results suggest that these small populations
of B. ilicifolia are suffering from the negative genetic effects
associated with areductionin size, and increased isol ation of
populations.

Although the pathogen was introduced as an unplanned
part of the experiment, presumably asaresult of over-watering,
the seedlings were equally exposed to the possibility of
infection, as they were randomly allocated to location on
glasshouse benches, and the genetic vigor of seedlings
apparently determined resistance. |n support to this, we found
some seedlings bearing fungus infection at their roots but
still survived until the harvest time. Another possible source
of pathogen infection is through the seeds (seed borne
disease), but this is unlikely as we had sterilized the seeds
prior to germination. Uponinfection, the seedlingseither died
or survived until the harvest time.

Differencesin seedling mortal ity with population size may
be due to genetic and/or non-genetic maternal effects, such
as seed size (Roach & Wulf 1987; Outborg & van Treuren
1995). Our inclusion of seed size asacovariate did not affect
the ANOVA results, suggesting a negligible maternal seed
size effect and indicated that the lower survival rate of
seedlingsfrom small populations probably hasagenetic basis.
Theory predictsthat inbreeding and genetic driftismorelikely
to occur in small populations, and that these processes will
lead toincreased homozygosity and therandom loss of aleles.
The loss of genetic diversity in small populations can be
expressed as inbreeding depression through, for example, an
increased susceptibility to diseases (O'Brien et al. 1983, 1985;
O'Brien & Evermann 1988; Ferguson & Drahuschak 1990).
We (Heliyanto et al. 2005) have previously shown that more
inbred offspring (selfs) of B. ilicifolia show lower resistance
to, and higher mortality from, root fungal pathogens, than
more outbred offspring (outcrossed). In an attempt to study
the potential role of pathogens as selective agents in plant
populations, Schmid (1994) also found apositive correlation
between genetic diversity and plant resistance, following
natural infestations by the mildew Erysiphe cichoracearum
in experimental stands of Solidago altissima.
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We suggest that the small populations of B. ilicifolia
produced on average relatively more inbred offspring that
demonstrate lower resistance to a pathogen induced stress
than seedlings from large populations. This conclusion is
supported by our earlier resultsthat showed high and marked
coefficients of inbreeding depression for selfed versus
outcrossed progeny and heterosis for locally outcrossed
versus long-distance outcrossed progeny (Heliyanto et al.
2006). Whilst we do not have data on outcrossing rates for
these populations, much lower levels of seed set following
hand self-pollination compared to pollination with outcross
pollen suggeststhat B. ilicifoliais preferentially outcrossing
and outcrossing rates are expected to be high in large
populations (Heliyanto et al. 2005). Lower levels of
outcrossing and higher levelsof correlated paternity are found
in smaller populations of the closely related B. cuneata
compared to larger populations (Coates & Sokolowski 1992),
suggesting that similar changes to mating patterns might be
expected in small isolated populations of B. ilicifolia.

Although population size strongly influenced seedling
survival under biotic-stress conditions, there was no
significant effect on germination rate and growth performance
of the surviving offspring. These observations suggest that
under relatively benign conditions of the glasshouse and in
the absence of the potentially lethal pathogen, inbreeding
depression effects are masked in B. ilicifolia. Inareview of
34 studies of inbreeding depression, Armbruster and Reed
(2005) found that inbreeding depression increases under
stress in 76% of cases, with a 69% increase in inbreeding
depression in stressful versus benign environments. Banksia
ilicifoliaispreferentially outcrossing (Heliyanto et al. 2005),
which maintains individual heterozygosity and masks a
significant genetic load. However, changesin population size
and breeding behaviour, such as increased inbreeding,
increases individual homozygosity in offspring and exposes
deleterious recessive aleles to selection. This appears to be
occurringin the small populations sampled, with significantly
higher mortality of seedlings under biotic-stress conditions
compared to larger populations. Our results suggest that these
small populations have not purged recessive deleterious
alleles(Barrett & Charlesworth 1991; Byers& Waller 1999), as
might be expected for these long-lived resprouters in
populationsthat have probably recruited rarely, if at all, since
fragmentation.

A genetic study using allozymesin the Banksia subgenus
Isostylis (B. ilicifolia, B. cuneata, and B. oliganta) has
indicated relatively low but similar levelsof genetic diversity
within these species (Broadhurst & Coates 2004). Although
Broadhurst and Coates (2004) concluded that there was no
relation between genetic diversity and population size, their
conclusion was based on acomparison of thelevelsof genetic
variability amongst the widespread B. ilicifolia (all sampled
populations > 300 plants) and the two geographically
restricted taxa B. oligantha (population size 15-250 plants)
and B. cuneata (population size 13-97 plants). Moreover, the
geographically restricted species may have been part of much
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larger populations prior to land-clearing-induced
fragmentation over the past 60 years (Broadhurst & Coates
2004). Further, allozyme variation isknown to be selectively
neutral (Ouborg & van Treuren 1995) and asaconsequenceit
might not represent characters (and thus genes) under
selection, such as those affecting growth and disease
resistance/susceptibility.

Increased mortality of offspring originating from small
populations was also found by Fischer and Matthies (1998).
However, wedid not find any association between population
size and seedling growth beyond seedling survival. The
inconsistent association between population size and plant
fitnessis not uncommon (David 1998; Slate et al. 2004) and
can be attributed to the presence or absence of linkages
between polygenic characters (fithess) and the measured
genetic diversity markers (Ouborg & van Treuren 1995).
Similarly, weak association between seedling mortality/
resistance, following disease incidence, and fitness has aso
been reported in plant species and was, in some cases,
attributabl e to the absence and presence of a pleiotropy gene
effect (Parker 1990).

An extreme example of therelationship between population
size and an effect on fitness in Banksia is for B. goodie;
Lamont et al. (1993) found complete reproductive failure (no
seed set) in small clonal populations which was attributed to
an absence of pollinators. This is an example of the Allee
effect (Allee 1931), wherelow population sizeleadsto low per
capita reproductive output. This effect is most pronounced
in plants that rely on animal pollinators, such as banksias.
Whilewedid not directly measurefruit set, there appeared to
be little difference between small and large populations.
However, the number of seeds that were predated by insects
was generally higher in the larger populations, and probably
related to fewer natural enemiesand greater quantity of natural
resources (food plants as suggested by Lee et al. 2002).

Our results imply that genetic effects (inbreeding
depression), rather than non-genetic effects (e.g. pollinator
service), are potentially compromising the viability of small
B. ilicifolia populations. However, while reasonabl e seed set
indicates that pollinators remain present and are servicing
the pollen dispersal needs of these plants, the nature and
frequency of pollinator movementsin small populations may
be different to large populations. More limited cross-
pollination would affect the“ genetic quality” of seedsin small
populations. For populations recently fragmented and
potentially isolated by, for example, urbanisation, a genetic
rescue program through wide-outcrossing may be required
to restore lost genetic variation and viability. We have
demonstrated earlier that outcrossed products of mating
between individualsfrom B. ilicifolia popul ations 30 km apart
showed amarked heterosis effect (Heliyanto et al. 2006).

Our observation that mortality under stress was higher
for seedlings originating from small populationsthan for those
from large populationsis of concern for the conservation and
management of previously widespread but recently fragmented
species, especialy with threats like climate change (Epps et
al. 2004) and surrounding land use impacts on remnants, that
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may increase stresslevelsin remaining populations. A greater
understanding of how these effects impact on long-term
population viability for naturally fragmented species is
urgently required for better conservation and management of
our uniqueflora.
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