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a b s t r a c t

Mount Halimun Salak National Park is one of the tropical forest remnants in Java island. The national
park has been recognized with high diversity of wild Zingiberaceae. Of that Zingiberaceae, two species
namely Alpinia malaccensis (AM) and Horstendia conica (HC), were domesticated as garden plants in the
surrounding area of the forest for medicinal use. The impact of domestication on the fungal endophytes
associated with these two species of Zingiberaceae is reported here. Fungal endophyte diversity in the
wild and domesticated AM and HC was analyzed based on the culturable fungi. Identification of species
level used morphological and molecular approaches of ITS rDNA sequence. This study determined 19
species of fungal endophytes, namely Arthrinium malaysianum, Aspergillus flavipes, As. sydowii, Chaeto-
mium globosum, Cladosporium oxysporum, Cladosporium sp., Colletotrichum boninense-complex, Co. cli-
viae-complex, Co. gloeosporioides-complex, Diaporthe sp., D. anacardii, D. gardenia, Exophiala sp., E.
lecanii-corni, Guignardia mangiferae, Ochroconis gallopava, Penicillium citrinum, Pyricularia costina, and
unsporulated Sydowiellaceae. Among them, A. malaysianum, C. globosum, Co. cliviae-complex, D. gardenia,
and unsporulated Sydowiellaceae were only found in domesticated plants, while some others were ab-
sent. Colletotrichum boninense-complex was commonly found in both wild and domesticated plants.
Domestication activity affected the diversity of endophytic fungi of AM and HC.
Copyright © 2015 Institut Pertanian Bogor. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Human activity, such as domestication of plant, causes a com-
plex evolutionary process of plant species which may lead to
morphological and physiological changes that distinguish the
domesticated plant from its wild ancestor (Hancock 2005). During
plant domestication process, genetic variation of the domesticated
plant probably occurs due to genes shifting. Domestication for any
agricultural purposes has had a profound impact on nature,
particularly on biodiversity (Ceccarelli 2009). Microorganism
communities associated with the plant, in particular fungi, are
often ignored during the process of domestication of their host.
These include changes in diversity of fungal endophytes on
domesticated plant and their functional roles. Besides, endophytic
fungal communities living within plant tissue produce significant
yu).
nian Bogor.
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impacts on plant communities through increasing fitness to abiotic
and biotic stress, increasing biomass and decreasing water con-
sumption, and so forth (Rodriguez et al. 2008). Moreover, a strong
genetic differentiation between populations from wild and culti-
vated hosts can lead to marked shifts in the evolutionary dynamics
of host-microbe interactions by environmental differences existing
between natural and domesticated habitats (Lebarbenchon et al.
2008; Stukenbrock and McDonald 2008).

All plants associated with various endophytic fungal commu-
nities (Arnold 2007). Yet, little information has been known
regarding the effects of domestication to the fungal communities
living within the tissue of their host plants, and on how the fungal
endophytes transmitted. Even though Schulz and Boyle (2005)
thought that most endophytes are transmitted horizontally from
plant to plant, rather than vertically as found in Clavicipitaceous
endophytes (Saunders et al. 2010). Furthermore, Munkacsi et al.
(2008) reported that Ustilago maydis, pathogen on maize,
appeared to have followed their host along the domestication
course through a process called host-tracking.
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Information regarding fungal endophyte assemblages on wild
and domesticated plants is limited. Hoffman and Arnold (2008) had
only described important effects of geographic locality on endo-
phyte community structure, even among closely related host spe-
cies. Therefore, it is necessary to examine differences on endophytic
fungal communities associated with wild and domesticated
plants to understand their functional role to the host plants.

Members of Zingiberaceae have traditionally been known for
their medicinal uses in Indonesia. In the previous study, Priyadi
et al. (2010) reported that, at least, 10 species of wild Zingiber-
aceae are distributed in Mount Halimun Salak National Park
(MHSNP) and several species have been domesticated by local
people. Previous studies on fungal diversity on zingiberaceous
plants noted that a high diversity of fungi with more than 170
species from 17 genera have been described (Bussaban et al. 2002;
Hyde et al. 2007). These include endophytes, saprobes and patho-
gens. No information was found on the impact of host domestica-
tion to their fungal endophytes. In this study, fungal endophytes
assemblages associated with wild and cultivated zingiberaceous
plants were examined to understand the impact of host domesti-
cation to the diversity of its fungal endophytes. It is expected that
information from the current study would lead to a wider consid-
eration of domestication strategy for herbaceous plants in
Indonesia.

2. Materials and methods

2.1. Plant materials
Collection of samples was carried out in February 2013. Two

species of zingiberaceous plants i.e. Alpinia malaccensis (AM; local
name: Raja Gowah) and Hornstedtia conica (local name: Pinding
Hijau) were selected for this study. Samples of wild and cultivated
plants were collected from MHSNP and backyard in the village
surrounding the forest.

2.2. Isolation of endophytic fungi
Endophytic fungi were isolated according to Okane et al. (2008).

Dried samples were cut into 4 segments (0.5 � 0.5 cm2) and put on
half-strength malt extract agar and incubated at 25 �C for 1e2
weeks. Mycelia that was growing from each plant segments was
isolated and purified by hyphal tip method using fine tungsten
needle in the low carbon agar and then potato dextrose agar media.

2.3. Morphotyping
The fungi were firstly grouped on the bases of their colony

appearance on potato dextrose agar such as colony shape, color,
elevation, texture, mycelia type, edges, density, and diameter.
Fungal colonies with similar characteristics were grouped into the
samemorphotypes. Microscopic observationwas also carried out to
verify the morphotyping by using OLYMPUS BX53 (Olympus,
Japan).

2.4. Molecular identification: DNA extraction, polymerase
chain reaction (PCR) amplification and sequencing

Representatives of each morphotype were selected for further
morphological and molecular determination. Molecular identifi-
cation of the fungal endophytes was based on analysis of sequence
generated from ITS rDNA region. Fungal genomic DNAwas isolated
from mycelium grown in PDB for 7 days at room temperature.
Mycelia were harvested and put into 2 mL plastic tubes by using a
spatula. DNA extraction was performed by PhytoPure™ DNA
extraction kit (Amersham International, Buckinghamshire, UK)
according to the manufacture’s protocol. Amplification was per-
formed at a total volume 25 mL with the following composition:
10 mL nuclease free water, 12.5 mL Go taq green mastermix™
(Promega, USA), 0.5 mL of each ITS5 (50-GGAAGTAAAAGTCGTAA-
CAAGG-30) and ITS4 (50-TCCTCCGCTTATTGATATGC-30) (White et al.
1990), 0.5 mL dimethyl sulfoxide, and 1 mL of DNA template. Thermal
cycle condition was set as follows: 90 seconds of initial denatur-
ation at 95 �C, followed by 35 cycles of 30-second denaturation at
94 �C, 30 seconds annealing at 52 �C, 90 seconds of extension at
72 �C, and a final 5 minutes of extension at 72 �C. A similar protocol
was used to amplify EF region using primer pairs of EF1-728F (50-
CATCGAGAAGTTCGAGAAGG-30) and EF1-986R (50-TACTTGAAG-
GAACCCTT ACC30). Amplification for EF-1a also performed at a total
volume of 25 mL as follow: 2.5 mL of PCR products from each PCR
reaction were examined by electrophoresis in a 1% (w/v) agarose
gel in 1� TAE buffer (0.4 M Tris, 50 mM NaOAc, 10 mM EDTA, pH
7.8) at 93 V for 25 minutes and visualized under ultraviolet light
after staining with ethidium bromide for 20 minutes. The PCR
products were sent to 1st BASE (Malaysia) for sequencing.

2.5. Phylogenetic analysis
BLASTN (http://blast.ncbi.nlm.nih.gov/Blast.cgi) of the se-

quences were done to get the closest generic name. For species
identification, ITS sequence data were aligned with the reference
strains in the corresponding genus and outgroup, except for
Aspergillus. The reference strains were cited from Asgari and Zare
(2011); Brensch et al. (2012); Busssaban et al. (2005); Cannon
et al. (2012); Crous and Groenewald (2013); Glienke et al. (2011);
Gomes et al. (2013); Houbraken et al. (2010); Kruys and Castlebury
(2012); Martin-Shanchez et al. (2012); Seyedmousavi et al. (2011);
Suh et al. (2012); and Thompson et al. (2011). The phylogenetic trees
were reconstructed on the bases of their maximum likelihood
calculation in the MEGA version 5.0 (Tamura et al. 2011). All pa-
rameters were set as default with 1000 bootstrap replication.
Phylogenetic tree using mixed data of ITS and EF was reconstructed
for accurate identification.

2.6. Diversity and clustering analysis
Endophyte diversity is stated as frequency of fungal occurrence

(one isolate is considered as one individual species) of each fungal
endophytes species in different host ecosystems and in host organ.
The diversity was also stated as Shannon-Wiener diversity index.
This index was calculated using the following equation:

Hs ¼ �
Xs

i¼1

pi$ln pi

where Hs is species diversity, s is the number of species in the
sample, Pi is the relative abundance of ith species ¼ n/N, N is the
total number of individuals of all kinds, n is the number of in-
dividuals of ith species, and ln is the log to base 2. The community in
each host ecosystem and organ were clustered using PASW statis-
tics 18 program.

3. Results

The samples of Zingiberaceae were collected from two ecosys-
tems, i.e. natural forest and semi-agricultural (Table 1). The envi-
ronmental parameters of these ecosystems were slightly different,
particularly in light intensity, and wind velocity. The Zingiberaceae
in natural ecosystem is under tree canopy while that of in semi-
agricultural ecosystem is in open area. In both ecosystems, the
plant samples grew vigorously and healthy. Morphological differ-
ences among the observed plants in both ecosystems were not
found.

A total number fungal endophytic colony appearing from one
plant segment varied. Most segments harbored one colony of

http://blast.ncbi.nlm.nih.gov/Blast.cgi


Table 1. Environmental parameters of Zingiberaceae ecosystem

Parameters Host in two different ecosystems

AMN AMD HCN HCD

Latitude S: 06�44.2930 S: 06�44.3330 S: 06�44.2930 S: 06�44.3270

N:106�31.6060 N:106�31.8650 N:106�31.6060 N:106�31.9060

Height (m ASL) 1104 1134 1104 1134
RH (%) 78 74 78 74
T (�C) 25 25 25 25
Light (Lux) 773 1203 773 1946
Wind (mph) 0 2.2 0 2.2

AM ¼ Alpinia malaccensis; D ¼ domesticated/semi-agricultural; HC ¼ Horstendia
conica; N ¼ natural/wild.
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fungal endophytes, but some segments were either free or con-
tained more than one colony. It was also related to incubation
period of the samples. The 1st fungal endophytic colony appeared
after 5 days of incubation, and most of the colonies appeared be-
tween 5 and 14 days of incubation. The slow growing fungal en-
dophytes emerged after 1 month of incubation. After purification,
148 fungal endophytes were obtained in total.

Based on colony appearance and microscopic characters exam-
ination, the fungal endophytes were divided into 19 morphotypes.
Phylogenetic analysis of the representative of each morphotypes
showed that there were 19 species. These include Arthrinium
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Figure 1. Occurrence frequency of fungal endophyte in various ecosystems. AM ¼ Alpinia mal
malaysianum, Aspergillus flavipes, As. sydowii, Chaetomium globo-
sum, Cladosporium oxysporum, Cladosporium sp., Colletotrichum
boninense-complex, Co. cliviae-complex, Co. gloeosporioides-com-
plex, Diaporthe sp., D. anacardii, D. gardenia, Exophiala sp., E. lecanii-
corni, Guignardia mangiferae, Ochroconis gallopava, Penicillium
citrinum, Pyricularia costina, and unsporulated Sydowiellaceae. All
these species were found in anamorphic stage, including Diaporthe
spp. and Guignardia mangiferae.

The distribution of endophytic fungal community on AM and
Horstendia conica (HC) were varied within different host species.
Frequency of occurrence (FO) of endophytes in domesticated
plants, even in the two host species, was higher than that of wild
plants (Figure 1). HC domesticated/semi-agricultural (D) contained
the highest FO (33.11%) and followed by AMD (25.68%), HC natural
(N) (22.30%), and AMN (18.92%) (Figure 1). The FOwas in contrast to
their diversity as shown by Shanon-Wiener index (Table 2). The
most diverse group of fungal endophytes hosted by AMN (2.14),
followed by AMD (1.90), HCN (1.67) and HCD (1.53) (Table 2).

Co. boninense-complex, Cladosporium sp., and E. lecanii-corni
were found to dominate the fungal endophytes community in all
hosts (16.89%e24.32%). This indicates that these fungal endophytes
are common in AM and HC, and their occurrence in both hosts are
not affected by the ecosystem. Another species, Co. gloeosporioides-
complex (13.51%) was also common on AM and HC. In contrast,
D. anacardiiwas host and ecosystem specific as it was only found on
Ar. malaysianum 
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accensis; D ¼ domesticated/semi-agriculture; HC ¼ Horstendia conica; N ¼ natural/wild.



Table 2. Diversity of endophytic fungi on various habitats

Habitat Shanon-Wiener (Hs) No. of species Existing species in nature Lost species from nature Newly found species in domesticated

Natural 2.12 14 14 5 e

Domesticated 1.90 14 e e 5
AMN 2.14 10 10 4 e

AMD 1.90 9 e e 3
HCN 1.67 9 9 4 e

HCD 1.53 11 e e 6
Leaf 1.54 12 8 2 6
Stem 1.29 6 2 2 3
Rhizome 0.68 3 1 1 4
Root 1.84 7 7 2 1

AM ¼ Alpinia malaccensis; D ¼ domesticated/semi-agricultural; HC ¼ Horstendia conica; N ¼ natural/wild.
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the domesticated AM, while G. mangiferae and P. citrinumwere only
found on the domesticated HC. The fungal communities in one
ecosystem were closely related regardless of the host (Figure 2).
HCN was closer to AMN, and HCD was closer to AMD.

The distribution of the fungal species within the host also varied
depending on their microhabitat. Roots were the most preferred
microhabitat by fungal endophytes as shown by Shanon-Wiener
index (1.84), followed by leaves (1.54), stems (1.29) and rhizomes
(0.68). Most fungal endophytes (14 of 19 species) were microhabitat
(organs) specific, and the remaining species showed to be common
and had wide microhabitats. Colletotrichum cliviae-complex, Dia-
porthe spp., G. mangiferae, Py. costinawere specific to the leaf, three
species (Ar. malaysianum, Cl. oxysporum, P. citrinum) and one
unsporulated Sydowiellaceae to the root and two species (As. sydowii
and Ch. globosum) to the stem and one species (As. flavipes) to the
rhizome. Fungal endophytes that had wide microhabitats were Cla-
dosporium sp., Co. boninense-complex, Co. gloeosporioides-complex,
E. Lecanii-corni, O. gallopava and Cladosporium sp. Colletotrichum
boninense-complex preferred to inhabit leaves (37.16%). It was also
found in root and stem but never found in rhizome. E. lecanii-corni
was found on root and leaf, while O. gallopava was found on stem
and leaf.

4. Discussion

There were 148 fungal isolates that distributed into 19 mor-
photypes. Phylogenetic analyses showed that these morphotypes
Figure 2. Clustering analysis of fungal endophytic community from different host ecosyst
conica; N ¼ natural/wild.
represented 19 species. All these species were found in anamorphic
stage, including Diaporthe spp. and G. mangiferae. Previous studies
reported that endophytic fungi belonging to Ascomycetes often
observed in anamorphic stage, and rarely form teleomorphic
structure (Davies et al. 2003; Khan et al. 2010; Pressel et al. 2008;
Rodriguez et al. 2009).

The light intensity and wind velocity in two kinds of ecosystem
in MHSNP were slightly different. The wind velocity apparently
determined the relative humidity and has influence on fungal
development (Thomas et al. 1988). However, the plant sampled in
both ecosystems grew vigorously, so it was assumed that the plant
health was not affected by the environmental condition of the
ecosystems. Host plant health was apparently not affected by
diffrences in FO. Interaction among fungal endophytes may
contribute to the plant health.

Domestication of plants affects significantly the FO in AM and
HC. The FO in domesticated environment was higher than that of
natural ecosystem. Thrall et al. (2007) stated that domestication/
agro-ecosystem favors for fungal infection rather than in natural
ecosystem. Gerard et al. (2006) stated that domesticated ecosystem
represented as monoculture agriculture system has lower species
diversity, higher host density, and uniform genes of fungal plant
pathogen. However, factors affecting different fungal community
on wild and cultivated plants are unknown.

FO in AM as well as in HC from natural ecosystem differ from
those of domesticated environment. Differences of fungal com-
munity within the same species of wild and cultivated plants are
ems. AM ¼ Alpinia malaccensis; D ¼ domesticated/semi-agriculture; HC ¼ Horstendia



Table 3. List of existing, lost, and newly found species

Habitat Existing species in natural ecosystem Lost species from nature Newly found species in domesticated

Natural Asf, Ass, Cl, Clo, Cob, Cog, Dsp, Da, E, El, G, P, Pyc, Sh Asf, Ass, Clo, Dsp, Pyc e

Domesticated e e Arm, Ch, Coc, Dg, US
AM Ass, Cl, Clo, Cob, E, El, G, P, Pyc, Ogv Ass, Clo, Dsp, Pyc Coc, Cog, Dg
HC Asf, Cl, Cob, Dsp, Da, E, El, P, Pyc Dsp, E, El, Pyc Arm, Ch, Cog, Da, US, Ogv
Leaf Cl, Cob, Cog, Dsp, Da, G, Pyc Dsp, Pyc Coc, Dg, E, El, US, Ogv
Stem Ass, Ogv Ass, Ogv Ch, Cl, Cob
Rhizome Asf Asf Ch, Cl, Cob, P
Root Cl, Clo, Cob, Cog, E, El, P Cl, Clo Arm

AM ¼ Alpinia malaccensis; Arm ¼ Arthrinium malaysianum; Asf ¼ Aspergillus flavipes; Ass ¼ Aspergillus sydowii; Chg ¼ Chaetomium globosum; Cl ¼ Cladosporium sp.;
Clo¼ Cladosporium oxysporum; Coc¼ Colletotrichum cliviae-complex; Cob¼ Colletotrichum boninense-complex; Cog¼ Colletotrichum gloeosporioides-complex; Dsp¼ Diaporthe
sp.; Dg ¼ Diaporthe gardenia; Da ¼ Diaporthe anacardii; E ¼ Exophiala sp.; El ¼ Exophiala lecanii-corni; G ¼ Guignardia mangiferae; HC ¼ Horstendia conica; Ogv ¼ Ochroconis
gallopava; P ¼ Penicillium citrinum; Pyc ¼ Pyricularia costina; US ¼ unsporulated Sydowiellaceae.
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probably related to variety in their adaptability to such environ-
mental condition. Whether this fungal endophytic diversity shifts
from providers to protectors as suggested by Thrall et al. (2007),
should be confirmed by further research. In addition, Rodriguez
et al. (2009) noted that some endophytes have the “habitat-
adapted” ability and hypothesized that this ability allows them and
their host to establish and survive in high-stress habitats. Pan and
May (2009) noted that species pools, habitat effects, and inter-
specific interaction among fungal endophytes affect the fungal
endophytic community in maize. In addition, fungal-fungal endo-
phytes interactionwithin the plant tissue seems to play a key factor
in affecting the structure of the endophytic fungal community.
“Habitat-adapted” ability of fungal endophytes is also related to the
ecosystem specificity of some fungal endophytes. The data clearly
showed that there is specificity of endophytic fungi in host (plant).
Some previous reports had investigated specificity of endophytes in
single plant species, and they strongly suggest the existence of
some degree of host specificity among fungal endophytes (Cannon
and Simmons 2002; Suryanarayanan et al. 2000).

In clustering analyses, fungal community in AM and HC from
natural ecosystem should rather be similar. However, these fungal
communities were found to change after domestication. However,
this is in constrast to Higgins et al. (2007) and Sun et al. (2008) who
reported that fungal endophytic communities were conspicuously
affected by their hosts. Even though they then stated that
ecosystem type (wild and domesticated) also contributes to the
endophytic fungal community structure. Wilbeforce et al. (2003)
also hypothesized that the diversity of endophytic fungi on resee-
ded agricultural grassland would be changed by the extreme and
uniform anthropogenic disturbance imposed within that area.

The endophytic fungi found in this study may be host and or-
gan specific, but they were usually not belonging to the dominant
species. This study also found that root were the most preferred
microhabitat. However, Arnold and Lutzoni (2007) previously
proved that leaf was the hot spot for fungal endophyte diversity in
tropical area. Leaves are a favorable environment for endophyte
development as leaves are the most active photosynthesis organ
on plant so nutrition supply will support endophyte development.
In addition, the presence of endophytes also alters the metabolism
of many plant species including enhancement of photosynthesis
(Marks and Clay 1996). Recently, Moricca et al. (2012) reported
that endophytes tended to be specific to each host, and to the
organs of that host. They also stated that interaction between plant
species and the environment and continued competitive interac-
tion between endophyte species may have led to niche diversifi-
cation, with selection favoring host specific and organ-specific
endophytes.

Although most of endophytes collected from MHNSP were
microhabitat (organ) specific, the relationship between the speci-
ficity with the anatomical structures of the plant organ is not
known. Differences in endophyte assemblages in different tissue
types might indicate a signal of tissue recurrences for dominant
taxa, andmight reflect their capacity for utilizing nutrients within a
specific substrate (Schardl et al. 2004).

The current study recorded newly found species in domesti-
cated plant, while some others were lost probably due to domes-
tication (Tables 2 and 3). Generally, therewere five of 14 species lost
from natural ecosystem. The highest number of newly found spe-
cies was on HCD and leaf. Anthropogenic impacts on all levels of
biological organization in agricultural systems that are occurring
through fragmentation and simplification of natural ecosystems
has been discussed by Thrall et al. (2011). Even though strong
indication of impact on endophytic fungal assemblage associated
with the two zingiberaceous plants (AM and HC) domestication
was shown in this study. Further study involving metagenomic
approach within timescale is necessary to confirm the current re-
sults. More samples (repeated sampling) should be considered to
minimize the bias of interpretation, including the number of indi-
vidual plants (as replication). The isolation techniques should also
be considered to reduce errors during analyses.
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