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Abstract 
Background Leprosy, also known as Hansen’s disease, is an infectious disease caused by Mycobacterium leprae. 
Despite ongoing efforts to control the disease, leprosy remains a global health concern, with Indonesia ranking 
third in the world for the highest number of cases.

Objective This study aims to identify epitopes that can induce T and B cell immune responses through an in silico 
approach, to design a multi-epitope vaccine candidate against Mycobacterium leprae.

Methods The study used an in silico vaccine design approach utilizing ESAT6, Ag85B, ML2028, ML2380, and 
ML2055 proteins from Mycobacterium leprae. The process involved sequence alignment, T cell (CTL and HTL) 
and B cell epitopes identification, and antigenicity, allergenicity, and toxicity assessment. Selected epitopes were 
constructed into a multi-epitope vaccine candidate using linkers. The tertiary structure of the vaccine was modeled 
with AlphaFold and evaluated via Prosa-web. The stability and interaction between the vaccine candidate and 
TLR4 were analyzed using molecular docking.

Results The vaccine candidate demonstrated stable interactions with TLR4, with a binding free energy of -13.9 kcal/
mol. The vaccine candidate was also predicted to be stable, antigenic, non-allergenic, non-toxic, and hydrophilic.

Conclusion This in silico design of a multi-epitope vaccine candidate shows potential for development as a 
vaccine against leprosy.
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Introduction
Leprosy, caused by Mycobacterium leprae, is a 

chronic infectious disease affecting the skin, peripheral 
nerves, and other tissues. Without early treatment, it leads 
to permanent disabilities (Hernani et al., 2007). Leprosy 
remains a global public health issue, affecting over 120 
countries, with more than 10,000 new cases reported 
annually. Indonesia ranks third globally in terms of new 
leprosy cases, following India and Brazil, with 12,443 
cases reported in 2022 (WHO, 2023). 

The Indonesian Ministry of Health (Kemenkes RI) has 
set to eliminate leprosy. Current treatment relies on multi-
drug therapy (MDT), combining antibiotics administered 
over 6 to 18 months (Kemenkes, 2022). However, 
prolonged treatment duration and drug side effects lead 
to non-compliance, increasing the risk of MDT-resistant 
strains. As new cases persist, more effective interventions, 
such as vaccination, are urgently needed to support 
elimination efforts. Vaccination aligns with Indonesia’s 
health transformation agenda, including developing 
pharmaceutical products, vaccines, and medical devices 
to strengthen national health resilience (Kemenkes, 2024).
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Systematic reviews have found that the Bacillus 
Calmette-Guérin (BCG) vaccine, primarily used for 
tuberculosis (TB), provides partial protection against 
leprosy (Coppola et al., 2018). The Mycobacterium 
indicus pranii (MIP) vaccine, developed in India, 
demonstrated only 39% efficacy in clinical trials (Reed 
et al., 2016). Another promising candidate, LepVax, is 
currently in preclinical trials, but its safety profile remains 
uncertain (Duthie et al., 2018).

Several proteins expressed by M. leprae, including 
ML2028, ML2380, and ML2055, are secretory proteins 
involved in the pathogenesis and immune response 
during infection. These proteins elicit specific cellular 
and humoral responses in leprosy patients (Sampaio et 
al., 2011). Geluk et al. (2002) identified L-ESAT-6, a 
homolog of M. tuberculosis ESAT-6 (T-ESAT-6), with 
a 63% homology between the two proteins. Efforts to 
develop new vaccines for TB have focused on Ag85B and 
ESAT-6 proteins. Preclinical studies in animal models, 
such as mice and rabbits, have shown that the Ag85B-
ESAT6 fusion protein offers protective immunity against 
TB, and this cross-reactivity suggests potential protection 
against leprosy (Coppola et al., 2018).

In silico epitope-based and multi-epitope vaccine 
design, utilizing immunoinformatic and bioinformatics, 
offers a promising approach for identifying potential 
vaccine candidates. Reverse vaccinology, combined with 
bioinformatics tools, enables the prediction of epitopes 
and the identification of promising peptide candidates 
for vaccine development (Goodswen et al., 2023). While 
in silico models cannot guarantee vaccine efficacy, 
preliminary studies using these methods can expedite the 
identification of promising targets for further in vitro and 
in vivo validation (Awad-Elkareem & Salih, 2017). For 
example, Ysrafil et al. (2022) successfully designed a 
multi-epitope vaccine from HABA and L7/L12 proteins, 
which activated both cellular and humoral immune 
responses in silico. This methodology could be similarly 
applied in developing a multi-epitope vaccine for M. 
leprae. In this study, we focused on predicting epitopes 
from Mycobacterium leprae proteins to develop a multi-
epitope vaccine candidate using an in silico approach.

Methods
Study location, duration, and design

The study was conducted at the Department of Medical 
Laboratory Technology, Politeknik Kesehatan Kemenkes 
Bandung, from September to October 2023. This research 
employed a quasi-experimental design performed in 
silico, using data and tools from various web servers. 
The study population consisted of Mycobacterium leprae 
protein sequences, with the specific samples being the 
partial sequences of proteins ESAT6 (OAR19522.1, 
OAR19682.1, OAR20282.1, OAX70072.1, OAX70580.1, 
OAX71810.1), Ag85B (P46842.2, P31951.2), ML2028 
(P31951.2), ML2380 (Q9CB68, CAC31896.1), and 
ML2055 (P46842.2, CAC31010.1).

Protein sequence retrieval
Protein sequences of Mycobacterium leprae were 

retrieved from GenBank at the National Center for 
Biotechnology Information (NCBI) (https://www.ncbi.
nlm.nih.gov/) and UniProt (https://www.uniprot.org/) 
databases (NCBI Resource Coordinators, 2018; Magrane 
& UniProt Consortium, 2011). These sequences were 
aligned using the MAFFT server (https://mafft.cbrc.
jp/alignment/server/) to identify sequence homology 
(Kuraku et al., 2013; Katoh et al., 2019). The consensus 
sequence was then generated using the EMBOSS Cons 
web server (https://www.ebi.ac.uk/Tools/msa/emboss_
cons/).

T-cell (CTL and HTL) epitope prediction 
Cytotoxic T lymphocyte (CTL) epitopes were 

predicted from the consensus sequence using the NetCTL 
1.2 server (https://services.healthtech.dtu.dk/service.
php?NetCTL-1.2), which predicts 9-mer epitopes across 
12 MHC class I supertypes (Larsen et al., 2007). Epitopes 
were selected with a threshold score of 0.75. For helper T 
lymphocyte (HTL) epitopes, predictions were made using 
NetMHCII 2.3 (https://services.healthtech.dtu.dk/service.
php?NetMHCII-2.3), targeting HLA-DR, HLA-DQ, 
and HLA-DP alleles with strong (2%) and weak (10%) 
binding affinities (Jensen et al., 2018).

Antigenicity, allergenicity, and toxicity prediction
To further validate the immunogenic potential of 

predicted CTL and HTL epitopes, antigenicity was 
predicted using VaxiJen v2.0 (http://www.ddg-pharmfac.
net/vaxijen/VaxiJen/VaxiJen.html) with a bacterial 
target threshold of 0.4 (Doytchinova & Flower, 2007). 
Allergenicity was evaluated using AllerTop (https://www.
ddg-pharmfac.net/AllerTOP/) (Dimitrov et al., 2014), and 
toxicity predictions were made using ToxinPred (https://
webs.iitd.edu.in/raghava/toxinpred/protein.php), which 
leverages SVM-based algorithms (Gupta et al., 2013).

B-cell epitope prediction
B-cell epitopes were predicted using the Immune 

Epitope Database (IEDB) server (http://tools.iedb.org/
bcell/) with the Bepipred Linear Epitope Prediction 
method and a threshold of 0.5 (Jespersen et al., 2017).

Multi-epitope vaccine construction
The selected CTL, HTL, and B-cell epitopes were 

assembled into a multi-epitope vaccine construct. The 
CTL epitopes were linked using AAY linkers (Bhatnager et 
al., 2020), HTL epitopes with GPGPG linkers (Livingston 
et al., 2002), and B-cell epitopes using KK linkers (Nain 
et al., 2020). A 6xHis tag was added at the C-terminus for 
purification purposes (Ayyagari et al., 2022).
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Evaluation and characterization of physicochemical 
properties

The physicochemical properties of the constructed 
multi-epitope vaccine were evaluated using ProtParam 
(https://web.expasy.org/protparam/) to predict molecular 
weight, theoretical pI, instability index, aliphatic index, 
and GRAVY score (Wilkins et al., 1999). The solubility of 
the protein in water was predicted using SOLpro (https://
scratch.proteomics.ics.uci.edu/).

Secondary and tertiary structure prediction
The secondary structure of the vaccine construct 

was predicted using SOPMA (https://npsa-prabi.
ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_
sopma), while the tertiary structure was predicted using 
AlphaFold (https://colab.research.google.com/github/
deepmind/alphafold/blob/main/notebooks/AlphaFold.
ipynb#scrollTo=XUo6foMQxwS2) or I-TASSER (https://
seq2fun.dcmb.med.umich.edu/I-TASSER/) (Jumper et 
al., 2021; Roy et al., 2010). The accuracy of the predicted 
3D structure was evaluated using the C-score and 
validated using ProSa (https://prosa.services.came.sbg.
ac.at/prosa.php) (Wiederstein & Sippl, 2007).

Molecular docking
Molecular docking was performed using 

HADDOCK2.4 (https://wenmr.science.uu.nl/haddock2.4) 
to evaluate interactions between the multi-epitope vaccine 
and the TLR4 receptor (PDB ID: 4G8A). The best docking 
models were selected based on the lowest HADDOCK 
score, indicating the most favorable receptor-ligand 
interaction. Binding energies were calculated to determine 
the spontaneity of the interactions.

Recombinant plasmid construction
The nucleotide sequence for the vaccine was optimized 

using J.Cat (http://www.jcat.de/) to ensure effective 
expression in an expression vector (Grote et al., 2005). 
The optimized sequence, codon adaptation index (CAI), 
and GC content were generated. Recombinant plasmid 
construction was designed using SnapGene.

Results 
Protein sequence retrieval

Protein sequences of ESAT6 (OAR19522.1, 
OAR19682.1, OAR20282.1, OAX70072.1, OAX70580.1, 
OAX71810.1), Ag85B (P46842.2, P31951.2), ML2380 
(Q9CB68, CAC31896.1), ML2055 (P46842.2, 
CAC31010.1), and ML2028 (P31951.2) were retrieved 
from the NCBI and UniProt databases. The sequences 
were aligned using the EMBOSS web server, generating 
a consensus sequence (Table 1). The consensus sequence 
was utilized for subsequent epitope prediction.

T cell epitope (CTL and HTL) prediction
Four CTL and four HTL epitopes were selected based 

on the highest antigenicity scores, non-allergenicity, 
and non-toxicity predictions (Table 2). These predicted 
epitopes were used for constructing the multi-epitope 
vaccine.

B Cell Epitope Prediction
B cell epitopes were predicted which epitope can 

stimulate a robust humoral immune response. Four B cell 
epitopes were identified based on their antigenicity scores 
(Table 3).

Table 1 Consensus sequences of aligned protein data 

Protein GenBank ID Consensus sequences

ESAT6 OAR19522.1
OAR19682.1
OAR20282.1
OAX70072.1
OAX70580.1
OAX71810.1

>EMBOSS0001
MTAAHFMTDPQAMRDMARKFDMHAQNVRDESHKMFMSSMDIAGAGWSGTAQLTSHDTMGQINQAFRHI
VTLLQDVRDQLGTAADRYEHQEENSRKILSGS

Ag85B 
&ML2028

P46842.2
P31951.2

>EMBOSS0001
MNQVDLDSTHRKWGLWAILAIAVVASASAFTMPLPAAANADPAPLPPSTATAAPSPAQEIITPLPGAPVSSEAQ
PGDPNAPSLDPNAPYPLAVDPNAGRITNAVFEWYYQGGFSFVLPAGWVESEASHLDYGSVLLSKAGCTTYK
WETFLTIEQPPVLGQPTVVATDTRIVLGRSMAGLDQKLYASAEADNIKAAVRLGSDMGEFYLPYPGTRINQET
IPLHANGIAGSASYYEVKDMFSDPNKPIGQICTSVVGSPAASTPDVGPSQRWFVVWLGTSNNPVDKGAAKEL
AESIRSFVHGSNLKFQDAYNGAGGHNAVFNLNADGTHSWEYWGAQLNEMAPDIPASVSAPAPVG

ML2380 Q9CB68
CAC31896.1

>EMBOSS0001
MSRLSTSLCKGAVFLVFGIIPVAFPTTAVADGSTEDFPIPRRQIATTCDAEQYLAAVRDTSPIYYQRYMIDMHNK
PTDIQQAAVNRIHWFYSLSPTDRRQYSEDTATNVYYEQMATHWGNWAKIFFNNKGVVAKATEVCNQYQAG
DMSVWNWP

ML2055 P46842.2
CAC31010.1

>EMBOSS0001
MNQVDLDSTHRKGLWAILAIAVVASASAFTMPLPAAANADPAPLPPSTATAAPSPAQEIITPLPGAPVSSEAQPG
DPNAPSLDPNAPYPLAVDPNAGRITNAVGGFSFVLPAGWVESEASHLDYGSVLLSKAIEQPPVLGQPTVVATD
TRIVLGRLDQKLYASAEADNIKAAVRLGSDMGEFYLPYPGTRINQETIPLHANGIAGSASYYEVKFSDPNKPIG
QICTSVVGSPAASTPDVGPSQRWFVVWLGTSNNPVDKGAAKELAESIRSEMAPIPASVSAPAPVG

https://web.expasy.org/protparam/
https://scratch.proteomics.ics.uci.edu/
https://scratch.proteomics.ics.uci.edu/
https://prosa.services.came.sbg.ac.at/prosa.php
https://prosa.services.came.sbg.ac.at/prosa.php
https://wenmr.science.uu.nl/haddock2.4
http://www.jcat.de/


Curr Biomed, 2025, 3(1): 22–30 25

In silico multi-epitope vaccine design for leprosy

Construction of the multi-epitope vaccine protein
The selected CTL, HTL, and B cell epitopes were 

assembled into a single vaccine construct. The CTL 
epitopes were linked using the AAY linker, HTL epitopes 
with the GPGPG linker, and B cell epitopes with the 
KK linker. A 6xHis tag was added to the C-terminus to 
facilitate purification (Figure 1). The final construct 
represents a candidate multi-epitope vaccine.

Physicochemical evaluation and characterization of 
the multi-epitope vaccine

The antigenicity of the constructed multi-epitope 
vaccine was re-evaluated using the VaxiJen v.2.0 server, 
yielding an antigenicity score of 0.8242, indicating strong 

antigenic properties. Allergenicity was re-assessed using 
AllerTop, confirming the vaccine is non-allergenic. The 
result of the physicochemical evaluation of the multi-
epitope vaccine is shown in Table 4. Solubility was 
analyzed using the SOLpro web server, which predicted 
that the protein is soluble with a probability of 0.9642. 

Secondary and tertiary structure prediction of the 
vaccine protein

The secondary structure prediction revealed that the 
vaccine protein consists of 16.67% beta strands, 22.9% 
alpha helices, and 60.42% coils (Figure 2). The tertiary 

Table 2 Prediction of T cell epitopes (CTL and HTL)

T Cell Epitope Protein Epitope Antigenicity Allergenicity Toxicity
CTL ESAT6 QLGTAADRY 1,0606 (Antigen) Non-allergen Non-toxin

Ag85B GAGGHNAVF 1,6272 (Antigen) Non-allergen Non-toxin
ML2380 SEDTATNVY 1,3050 (Antigen) Non-allergen Non-toxin
ML2055 GRLDQKLYA 1,2273 (Antigen) Non-allergen Non-toxin

HTL ESAT6 SSMDIAGAGWSGTAQ 1,1433 (Antigen) Non-allergen Non-toxin
Ag85B VFEWYYQGGFSFVLP 1,2235 (Antigen) Non-allergen Non-toxin

ML2380 TDRRQYSEDTATNVY 1,0664 (Antigen) Non-allergen Non-toxin
ML2055 ANGIAGSASYYEVKF 1,1568 (Antigen) Non-allergen Non-toxin

Table 3 Prediction of B cell epitopes

Protein B Cell Epitope
ML2055 AANADPAPLPPSTATAAPSPAQEIITPLPGAPVSSEAQPGDPNAPSLDPNAPYPLAVDPNAGRITNAV
ML2380 LSPTDRRQYSEDTATNVYYEQMATH

Ag85B & ML2028 SEASHLDYGSVLLSKAGCTTYK
ESAT6 IAGAGWSGTAQLTSHDT

Figure 1 Structural arrangement of the multi-epitope vaccine candidate protein. This figure illustrates the design and 
arrangement of epitopes and linkers in the multi-epitope vaccine construct. Linker AAY ( ), linker GPGPG ( ), dan linker 
KK ( ).

Table 4 Physicochemical properties of the vaccine candidate
Parameter Value

Number of amino acids 240
Molecular weight 24,726.12 Da
Theoretical pI 6,12
Half-life 30 hours (mammalian reticulocytes, in vitro), >20 hours (yeast, in vivo), and >10 hours (E. coli, in vivo).
Instability index 32.79 (Stable protein)
Aliphatic index 57.58
GRAVY (Hydropathy index) -0.470
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structure was validated using the ProSA web server, 
which returned a z-score of -2.36, indicating good overall 
model quality (Figure 3).

Molecular Docking
Molecular docking was performed to evaluate the 

interaction between the candidate vaccine protein and the 
TLR4 receptor, which plays a crucial role in the innate 
immune response. The molecular docking analysis of the 
vaccine and TLR4 are shown in Figure 4 with a binding 
affinity value of -13.9 kcal/mol, indicating strong binding 
potential (Table 5). This interaction suggests that the 
multi-epitope vaccine could potentially elicit an effective 
immune response via TLR4 signaling.

Table 5 Binding free energy and dissociation constant (Kd) 
prediction

Parameter Value
ΔG (kcal/mol-1) -13.9
Kd (M) at °C 6.9e-11

ICS charged-charged 22
ICS charged-polar 30
ICS charged-apolar 18
ICS polar-polar 13
ICS polar-apolar 28
ICS apolar-apolar 5
NIS charged 23.03
NIS apolar 35.3

Figure 2 Secondary structure of the vaccine candidate. In the secondary structure visualization, red denotes beta strands, blue 
denotes alpha helices, and yellow denotes coils.

Figure 3 Tertiary structure of the vaccine candidate and z-score validation. (A) z-score of -2.36, indicating good model quality. (B) 
Tertiary structure of the multi-epitope vaccine candidate. 



Curr Biomed, 2025, 3(1): 22–30 27

In silico multi-epitope vaccine design for leprosy

Recombinant Plasmid Construction
Codon optimization was performed using the J.Cat 

server to check the optimization of gene expression in 
Escherichia coli. The optimized nucleotide sequence 
exhibited a Codon Adaptation Index (CAI) of 1.0 and a 
GC content of 57.36%, indicating ideal conditions for 
bacterial expression. The pET-28a plasmid was selected 
for in silico cloning, facilitated by SnapGene software. 
EcoRI and XhoI restriction enzymes were used to insert 
the target gene into the multiple cloning site (MCS) of the 
plasmid (Figure 5).

Discussion
This study aimed to design a potential vaccine 

candidate against leprosy using a reverse vaccinology 
approach. Reverse vaccinology identifies specific epitopes 
that elicit cellular and humoral immune responses (Awad-
Elkareem & Salih, 2017). The proteins selected for this 
study (ESAT6, Ag85B, ML2028, ML2380, and ML2055) 
are crucial for Mycobacterium leprae’s pathogenesis and 
structural integrity.

Figure 4 Molecular docking results of the vaccine candidate with TLR4 receptor. The vaccine is represented in red, and the TLR4 
receptor in blue. The docking visualization uses a new cartoon representation highlighting secondary structures. 

Figure 5 In silico cloning results of the vaccine candidate in E. coli (strain K-12). The vaccine component is indicated in red, cloned 
into the pET-28a expression vector, showing the successful insertion of the vaccine gene. 
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ESAT6 is an extracellularly secreted protein with 
a molecular weight of 6 kDa, playing a pivotal role in 
the pathogenicity of leprosy (Hadi & Kumalasari, 2017). 
ML2028, part of the Ag85 complex, is a crucial enzyme 
for trehalose monomycolate (TMM) and trehalose 
dimycolate (TDM) synthesis, essential components for the 
cell wall’s biogenesis and integrity (Brennan & Spencer, 
2019). ML2055 is a surface-associated protein that binds 
fibronectin, aiding bacterial adherence and internalization 
(Soares et al., 2021). These proteins were selected due 
to their immunogenic properties and potential as vaccine 
targets.

Thirteen protein sequences were retrieved, and epitope 
prediction was conducted to identify epitopes capable of 
being recognized by B cells, cytotoxic T lymphocytes 
(CTLs), and helper T lymphocytes (HTLs). The 
recognizable by immune cells is crucial for generating 
a robust immune response involving both humoral and 
cellular immunity. The epitopes were selected for their 
ability to interact with MHC class I and MHC class II 
molecules, essential for effective antigen presentation and 
subsequent T cell activation.

Linker sequences, such as AAY, GPGPG, and KK, play 
a critical role in enhancing epitope presentation, vaccine 
stability, and overall antigenicity (Livingston et al., 2002; 
Tahir ul Qamar et al., 2020). An overlapping sequence, 
SEDTATNVY, was identified for both CTL and B cell 
epitopes, enabling dual induction of cellular and humoral 
responses. A HisTag was added to the C-terminus to 
facilitate the purification of the vaccine protein (Ayyagari 
et al., 2022).

The physicochemical evaluation revealed that the 
designed vaccine has a molecular weight of 24,726.12 Da 
and an isoelectric point (pI) of 6.12, indicating that the 
protein is moderately acidic. Proteins with a molecular 
weight below 110 kDa are typically easy to purify, 
enhancing their applicability in vaccine development 
(Naz et al., 2015). Additionally, the aliphatic index of 
57.58 suggests that the vaccine protein is thermally stable, 
while the stability index of 32.79 classifies it as stable 
(Enany, 2014). The GRAVY score of -0.47 indicates that 
the vaccine is hydrophilic, facilitating interaction with the 
immune system in aqueous environments. The solubility 
prediction confirmed that the vaccine has excellent 
solubility with a probability of 0.964 (Magnan et al., 
2009).

Structural analysis indicated that the vaccine 
comprises 16.67% beta strands, 22.9% alpha helices, and 
60.42% coils, reflecting a balanced secondary structure. 
The z-score of -2.36 from tertiary structure validation 
confirms that the vaccine’s overall structure is highly 
quality, aligning well with native protein structures 
(Wiederstein & Sippl, 2007).

Molecular docking results showed a high binding 
affinity between the vaccine and TLR4, with a free 
energy (ΔG) of -13.4 kcal/mol. This strong interaction 
suggests the vaccine may effectively stimulate TLR4-

mediated innate immune responses. The low dissociation 
constant (Kd of 6.9e-11) further supports the stability of the 
vaccine-TLR4 complex under physiological conditions 
(Tedjokusumo et al., 2023).

Codon optimization for expression in E. coli yielded 
a CAI of 1.0 and a GC content of 57.36%, within the 
ideal range for efficient transcription and translation 
(Narula et al., 2018). The gene encoding the vaccine was 
successfully inserted into the pET-28a plasmid using 
EcoRI and XhoI restriction sites, confirmed by in silico 
mapping using SnapGene (Puigbò et al., 2008). These 
restriction enzymes were selected for their compatibility 
with the plasmid’s multiple cloning site (MCS) and their 
positioning relative to the ribosome binding site (RBS), 
ensuring efficient translation (Shilling et al., 2020).

Conclusion 
The in silico design of the multi-epitope vaccine 

identified several promising epitopes that could serve as 
alternative candidates for a leprosy vaccine. The designed 
vaccine demonstrated stable, antigenic, non-allergenic, 
non-toxic, and hydrophilic properties, critical for inducing 
a robust immune response. Additionally, molecular 
docking analysis revealed strong binding affinity between 
the vaccine and TLR4, with a binding free energy of -13.4 
kcal/mol, suggesting its potential efficacy in stimulating 
the innate immune system. These findings provide a 
solid foundation for further experimental validation, 
positioning the predicted multi-epitope construct as a 
promising candidate for leprosy vaccine development.
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