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 A B S T R A C T 
 

Numerous studies stated that the performance of ensemble mean derived 

from multiple climate models generally surpassed the individual member 

model, and applying weighting factors potentially increase the ensemble 

mean of performance. This study aims to assess the performance of 

unweighted and weighted ensemble means of 9-modelled precipitation 

datasets in the CORDEX-SEA multi-model simulations for 1981-2005. The 9 

datasets included: CNRM_a, ECE_b, GFDL_b, IPSL_b, HadGEM2_a, 

HadGEM2_c, HadGEM2_d, MPI_c, and NorESM1_d. The weighting factors 

were derived from the models' skill scores measured using five statistical-

based metrics, namely Taylor, Pierce (SS), Tian skill score (Tian), Climate 

prediction index (CPI), and Performance and Independence (PI). The ERA5 and 

GPCP precipitation datasets were used as the references for comparison. 

Then, reliable metrics will be used to determine the weighting factor. The 

results found that three metrics namely Taylor, SS, and Tian were more 

reliable than the other two metrics (CPI and PI). Spatially, the weighted 

ensemble mean based on a random method was superior to other ensemble 

mean methods and individual models. We found that the CNRM_a and 

GFDL_b models were spatially performed best. In contrast, most the ensemble 

means was temporally less performed compared to the individual model. Our 

findings suggested that by removal of low performance models will 

significantly influence on the overall ensemble model performance. Further, 

the research may provide valuable considerations of climate models selection 

for climate projection assessments, especially in the Southeast Asia region. 
 

 

K E Y W O R D S  

climate models, model skill score, performance evaluation, statistical-based metrics, 

weighting factors  

INTRODUCTION 

The numerous climate models with their 

respective strengths and weaknesses undoubtedly 

require evaluation, selection, or combination to obtain 

more accurate climate projection results (Lutz et al., 

2016; Pierce et al., 2009). As it is essential to evaluate 

the output of climate models  (Kim et al., 2014), it needs 

to be done more efficiently and consistently (Eyring et 

al., 2016). However, previous assessments of climate 

models that combine many different factors aren't 

always helpful in certain situations. A model that works 

well for a specific variable, time scale and area, might 

not work well for other variable, time scale and area 

(Schaller et al., 2011). This is mainly due to different 

formulations and parameterizations within each model 

(Rummukainen, 2016). Thus, evaluating the proficiency 

of climate models remains a complex task (Siew et al., 
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2014). Evaluation of the CORDEX-SEA dataset, focusing 

on the ensemble mean, reveals a higher fit between the 

ensemble mean and the observational data. A study by 

Tangang et al., (2020) compared the ensemble mean of 

RCMs and GCMs with the result that RCMs which have 

a higher resolution can produce a better performance 

even in areas with complex topography. The ensemble 

mean has a higher correlation value and a lower RMSE 

than its individual component models (Lee and Wang, 

2014).  

Several studies stated that the ensemble mean 

shows a better agreement to observational data than 

the single model (Schaller et al., 2011). It might be 

caused by the possibility that wet and dry biases from 

individual models cancel each other out (Nguyen et al., 

2022). In addition, using the ensemble mean in climate 

model analysis aims to reduce uncertainty (Doblas-

Reyes, 2021; Wang et al., 2019). Studies in CORDEX-SEA 

ensemble mean calculations often use an averaging 

method without considering weight factors for 

constituent model performance (Tangang et al., 2020). 

While investigations suggest that unequally weighted 

multi-model combinations may have varying success 

(Delsole and Tippett, 2012; Christensen et al., 2010). 

Some studies show improved results with weight 

factors applied (Brunner et al., 2019; Wang et al., 2019; 

Knutti et al., 2017b).  

Weighting methods are based on model 

performance and have the potential to increase the 

reliability of climate model performance (Casanova and 

Ahrens, 2009; Weiland et al., 2021).  Hence, it is 

necessary to explore the potential of incorporating 

weighting factors in the ensemble mean of the 

CORDEX-SEA multi-model simulations. As there is no 

standardized approach for determining weighting 

factors in forming the weighted ensemble mean, the 

general knowledge is the potential source of these 

weights lies in the models' performance, evaluated 

using the relevant metrics (Flato  et al., 2013). Moreover, 

as the performance of the models are commonly 

assessed by a metric that quantifiably measure the 

similarity of a model to the reference (Ningrum et al., 

2023; Reed et al., 2022) different types of metrics 

frequently produce varying results. Hence, assessing 

the robustness of metrics being used to measure the 

models’ performance is crucial.  

The aim of this study is to assess the performance 

of the weighted ensemble means from nine CORDEX-

SEA output models in simulating precipitation during 

the historical period from 1981 to 2005. Given that the 

accuracy of the weighting factors used relies on the 

resilience of the chosen metric, this study also 

investigates the robustness of several metrics to 

consistently measure the models' performance. The 

weighting factors used were determined based on the 

scores obtained from the selected metrics and from 

random weights (Chen et al., 2017). The findings of this 

study are expected to serve as additional important 

considerations when selecting the appropriate ensem-

ble mean for climate projection analysis in the 

Southeast Asian region. 

RESEARCH METHODS 

Data 

The datasets utilized in this study comprised of 

nine  models  extracted  from  the  CORDEX-SEA  output 

simulations, encompassing  the  Southeast  Asia  region  

 

 
Figure 1.  Map of Southeast Asia region. 
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Table 1.  Climate models’ overview. The lowercase letters represent the model ID in respect to their RCM models. 

No 

GCM 

(Driving model) 

RCM 

(Dynamical downscaling) 
Grid 

size 

(lat, lon) 

Model ID 

Institute Model Institute Model 

1 CNRM (France) CNRM-CM5  SMHI (Sweden) RCA4 194, 264 CNRM_a 

2 EC-Earth (Europe) EC-EARTH  ICTP (Italy) RegCM4-3 191, 253 ECE_b 

3 NOAA (USA) GFDL-ESM2M  ICTP RegCM4-3 191, 253 GFDL_b 

4 IPSL (France) IPSL-CM5A-LR  ICTP RegCM4-3 191, 253 IPSL_b 

5 Hadley Centre (UK) HadGEM2-ES  SMHI (Sweden) RCA4 194, 264 HadGEM2_a 

6 Hadley Centre (UK) HadGEM2-ES  ICTP RegCM4-7 189, 335 HadGEM2_c 

7 Hadley Centre (UK) HadGEM2-ES  GERICS (Germany) REMO2015 201, 273 HadGEM2_d 

8 MPI (Germany) MPI-ESM-MR  ICTP RegCM4-7 189, 335 MPI_c 

9 NCC (Norway) NorESM1-M  GERICS REMO2015 201, 273 NorESM1_d 

 

geographically positioned between 90.5°E to 145°E and 

14.5°S to 25.5°N (Figure 1). The utilized climate models 

comprise monthly historical precipitation data 

spanning the period from 1981 to 2005, with a 

resolution of 0.22° (approximately 25 km). The choice 

of the evaluation time period was determined by data 

availability. Specifically, the observational dataset 

(GPCP) covers the period from 1979 to 2017, whereas 

the model historical datasets are available only until 

2005.  The description of the models is presented in the 

Table 1.  

Data Processing 

Considering that the ensemble mean's superiority 

may stem from the potential cancellation of wet and 

dry biases from individual models (Nguyen et al., 2022), 

it suggests that this superiority may depend on the size 

of the domain where, bigger is better. Therefore, this 

study covers both land and ocean regions. Acquiring 

reference datasets that encompass both land and 

ocean areas, while maintaining a resolution comparable 

to the models under assessment, presents a challenge.  

Hence, ERA5 (Hersbach  et al., 2020) and GPCP 

(Adler et al., 2018) were selected as the reference 

datasets as both of them encompass land and ocean. 

Several studies have shown the advantages of ERA5 as 

a reference dataset, not only because of its higher 

resolution but also its comparable quality (Vanella et al., 

2022; Jiao et al., 2021; Tarek et al., 2020). The ERA5 and 

GPCP datasets exhibit a high level of quality when 

compared to other observational datasets used for 

comparison, as shown in Figure A1, with their similarity 

suggesting potential interchangeability (Tangang et al., 

2020) as reference. The description of the references 

data that used is presented in the Table A1. 

This study employed RCMES (Regional Climate 

Model  Evaluation  System),  an  open-source  Python- 

based program (Lee et al., 2018), as the primary tool for 

processing, analyzing, and visualizing the data. 

Adjustments were made to match it to the specific 

characteristics of the data and the study domain. The 

evaluation stage began with checking the minimum 

and maximum values in the data to ensure the absence 

of outlier data. Next, a selection was conducted among 

the considered multi-metrics to identify the most 

robust metrics that would be used in determining the 

weighting factors. The considered metrics are Taylor’s 

skill score (S) (Taylor, 2001), Climate Prediction Index 

(CPI) (Murphy et al., 2004), Pierce’s skill score (SS) 

(Pierce et al., 2009), Tian’s skill score (Tian) (Tian et al., 

2017), and Performance and  Independence weighting  

(PI)  (Sanderson et al., 2017; Knutti et al., 2017a; Brunner 

et al., 2019), and orderly listed in the Equation (1-5). 

S     =
4(1+r)

(σr+1/σr)2 (1+r0)
        (1) 

CPI = exp [−0.5 
(s−o)2

σ2 ]      (2) 

SS = rm,o
2 − [rm,o − (

Sm

So
)]

2

− [
(m̅−o̅)2

So
]

2

    (3) 

Tian =
1+R

2
[1 − MSE/(Bias2 + σm

2 + σo
2)]    (4) 

PIi =  
e

−
Di
σD

1+ ∑j≠i
M e

−
Sij
σS  

       (5) 

In these equations, 𝑟 represents the correlation 

coefficient for the observed and simulated data, 𝑟0 

denotes the maximum correlation (set to 1 in this 

study), 𝜎r is the standard deviation, s is the mean of 

simulated data, o is the mean of observed data, 𝜎 is 

variance, Sm  is standard deviation of modeled data, So 

is standard deviation of observed data, and the bar 

symbol on top of m and o indicate the average value of 

modeled and observed data respectively. 
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Figure 2.  Schematic diagram of the research methods. 

 

Ensemble Means Performance 

This study assessed the performance of two types 

of ensemble means. The first is the unweighted or 

equally weighted ensemble mean (Herger et al., 2017), 

commonly referred to as the multimodel ensemble 

mean (MME) (Shin et al., 2020). In this type, each model 

is assigned the same weighting factor (usually 1) in the 

averaging process regardless of its performance score. 

The second type is the unequally weighted ensemble 

mean, where each model is assigned different 

weighting factors based on its respective performance 

scores. In this study, we formed three types of weighted 

ensemble means (WE_Taylor, WE_SS, WE_Tian) based 

on the three most robust metrics used to assign weight 

factors according to their performance scores. The 

model performance scores were obtained by 

calculating the temporal average, standard deviation, 

correlation, and other statistical parameters required by 

each metric (Equation 1-5). These calculations are 

based on the annual rainfall time series data. 

Additionally, we created the fourth type, one 

(WE_Rand) using the random weight method by 

generating weights randomly 100 times and selecting 

the weight configuration that yielded a standard 

deviation ratio and correlation closest to 1.  These steps 

are illustrated in Figure 2. Subsequently, this study 

assessed the performance of the models and the 

ensemble means in terms of various aspects, including 

spatial mean, zonal mean, and seasonal-to-inter-

annual variability. Furthermore, as the SEA region 

experiences strong seasonal contrasts in precipitation 

distribution  (Nguyen et al., 2022), to accurately capture 

these seasonal contrasts, the evaluations were mostly 

conducted in summer (JJA) and winter (DJF) seasons. 

Finally, the performance results of the models are 

summarized in the last section. 

RESULTS AND DISCUSSION 

In this study, to validate the data used, the initial 

phase of model performance evaluation involves 

screening the model's maximum and minimum values. 

This step is crucial for identify any extreme values in the 

error category caused by the presence of relaxing zones 

in the RCMs (Giorgi, 2019). If these relaxing zones 

persist in the model's dataset, they need to be 

excluded, as the objective is to evaluate valid datasets. 

Among the 9 model datasets examined, it was dis-

covered that IPSL_b and GFDL_b models exhibited 

unreasonable maximum values (resulting from relaxing 

zone effects) at the lateral boundaries domain. To 

mitigate the impact of such errors on subsequent 

stages of evaluation, the study domain was shifted to 

latitude and longitude boundaries that were free from 

these errors. Screening the minimum values plays a 

crucial role in identifying invalid rainfall amounts below 

zero. Some models exhibited negative values, but these 

values have very small magnitudes (on the order of < 

E-10), rendering them insignificant. 

Robust Metrics and Weighting Factors  

The annual rainfall from each models is shown in 

Figure 3. Comparison of the results from five metrics is 

illustrated in Figure 4a revealing considerable variability 

in performance scores across each metric. In Figure 4a, 

two main patterns are clearly visible. Firstly, most 

metrics provide higher scores for the observation 

dataset (GPCP). Secondly, most metrics also 

demonstrate  a  high  agreement  with  the  ensemble  
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Figure 3.  Time series of the annual mean precipitation over SEA region. 

 

mean (MME). This result is consistent with typical 

model evaluations, where the MME generally 

outperforms individual models in most cases (Tangang 

et al., 2020; Lee and Wang, 2014; Schaller et al., 2011). 

In contrast, for the models, the  metrics produce varied 

results. In this stage, to identify robust metrics, we 

examined how the metrics scored the models that were 

clearly close or far from the reference dataset. For 

instance, we observed how the metric scores CNRM_a, 

which is very close to the reference. In this regard, it 

should receive a higher score as it is very close to the 

reference dataset.  

However, the PI metric gives a very lower score, 

indicating that in this case, PI is not a robust metric. This 

is also supported by the fact that this metric also gives 

lower scores to ECE_b, HadGEM2_a, NorESM1_d and 

GFDL_b, while most metrics give them higher scores. 

Therefore, this analysis indicates that the PI metric 

exhibits the lowest of robustness compared to other 

metrics. Additionally, Gleckler et al., (2008) highlighted 

the importance of assessing the associations between 

the data provided by each metric to determine their 

robustness. Based on this, Figure 4b presents the cross-

correlation results among the metrics, indicating that 

the CPI metric yields the lowest result. This is because 

CPI demonstrates a weak correlation with two metrics, 

unlike other metrics that exhibit a weak correlation with 

no more than one metric. Taking this into account, the 

CPI metric should also not be deemed a robust metric. 

Although no single evaluation technique or per-

formance measure is deemed superior (Flato et al., 

2013), and a better approach is to use a combination of 

several metrics or average the results from various 

metrics (Reichler and Kim, 2008), in this study we chose 

to minimize the number of metrics used by excluding 

some based on the above robustness considerations.  

Upon excluding the PI and CPI metric, comparing  the 

remaining three metrics is challenging, as each 

possesses its own slight strengths and weaknesses. This 

is evident from how they score the IPSL_b and ECE_b 

models.  

In this stage, Tian metric is preferable because it 

assigns a lower score to IPSL_b (which has a significant 

underestimation) while the other metrics (Taylor and 

SS) give higher scores. However, when scoring ECE_b 

(which has a significant overestimation), the situation is 

reversed (Taylor and SS are better). Considering this, 

the study selected Taylor, SS, and Tian as the most 

robust metrics for quantitatively measuring the skill 

scores of the models. These skill scores including scores 

from random weighting method, in Figure 4c were 

subsequently employed as weighting factors in the 

creation of four weighted ensemble means, namely 

WE_Taylor, WE_SS, WE_Tian, and WE_Rand. 

Spatial-Based Evaluation  

This evaluation was conducted on the average of 

climatological rainfall over 25 years in the winter (DJF) 

and summer (JJA) seasons. The SEA region shows 

significant seasonal variations in precipitation dis-

tribution (Nguyen et al., 2022). Hence, to accurately 

capture these variations, separate evaluations were 

performed for the summer (JJA) and winter (DJF) 

seasons separately. It can be seen from Figure 5 that 

among the ensemble mean types, the highest result is 

obtained by the weighted ensemble mean of WE_Rand  
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Figure 4.  .Plot of (a) skills scores of the models based on each metric (Taylor’s, Climate Prediction Index (CPI), skill 

score (SS), Tian’s skill score (Tian), and Performance and Independence weighting (PI)) (b) the cross-

correlation among those five metric scores, and (c) four weighting factors obtained from three 

performance metrics and random (rand) method.

(0.93), followed by WE_SS (0.91), and MME (0.90), 

WE_Tian (0.89) and WE_Taylor (0.88). This indicates that 

ensemble means with weighting factors, slightly 

produce better results. This supports the findings that 

weighting methods have the potential to increase the 

climate model performance (Casanova and Ahrens, 

2009; Weiland et al., 2021) and it might be only suitable 

for a specific case (Delsole and Tippett, 2012; Chris-

tensen et al., 2010). In addition, GPCP, exhibits 

remarkably similar pattern (the highest similarity score 

of 0.94), indicating its significant proximity to ERA5. 

Moreover, the models that are most similar to the 

reference datasets are CNRM_a with the similarity score 

of 0.83 followed by ECE_b (0.73) and HadGEM2_a (0.73). 

In JJA season (Figure A2), the results are slightly lower 

than DJF. Atmospheric circulation in Southeast Asian 

region is largely modulated by the Asian-Australian 

monsoon,  where  the  migration  of  the  inter-tropical 

(a) 

(b) 

(c) 
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Figure 5.   Climatological mean rainfall from 1981 to 2005 in the SEA region in winter (DJF) season. The value inside 

the brackets represents the pattern similarity scores with the references (ERA5). MME (and four last figures) 

represents ensemble mean without (with) weighting factors. 

convergence zone (ITCZ) and monsoon (Robertson et 

al., 2011), trough affects the distribution of precipi-

tation in the region. Therefore, the models must be  

able  to  simulate  this regional circulation to capture 

the distribution of precipitation correctly (Tangang et 

al., 2020). Figure 6 shows the distribution of average 

precipitation around the equator obtained from the 

climatological and zonal mean (with respect to 

longitude). The GPCP and ERA5 datasets have an 

identical pattern, namely the letter ‘A’. The temporal-

spatial distribution pattern of rainfall (letter A) over the 

SEA results from the year-round ITCZ migration pattern 

around the equator (Tangang et al., 2020).  

It is interesting to note that all ensemble means 

outperform all individual models, and the highest score 

is for the weighted ensemble mean WE_Rand (0.97), 

followed by WE_SS (0.96), WE_Taylor (0.96), and MME 

(0.94). The individual model that has the highest 

performance is CNRM_a (0.85) and the lowest is IPSL_b 

(0.44). Since the comparison of model performances is 

 

 
Figure 6.   .Zonally averaged annual cycle of precipitation over SEA region in the CORDEX-SEA models and five types 

of their ensemble means. The values in the brackets represent the similarity of the model to the reference 

(ERA5). 
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Figure 7.   Taylor diagram of DJF (left) and JJA (right) seasons showing the performance of 9 models (A-I), ensemble 

mean (J), and four weighted ensemble means: Taylor (K), SS (L), Tian (M), Random (N). 

 

typically presented using a Taylor diagram, this section 

provides an additional plot for comparison. The 

calculation of the standard deviation ratio and pattern 

correlation utilized in the Taylor diagram is performed 

on a spatial basis. Figure 7 clearly shows that each 

model has varied performance, and the weighted 

ensemble mean of WE_Rand (N) is in the leading 

position, followed by WE_SS, WE_Taylor, and the 

unweighted ensemble mean MME (J). It is apparent that 

the expected improvement in performance from the 

weighted ensemble mean over the unweighted 

ensemble mean occur slightly in this case, as men-

tioned in several studies (Sanderson et al. 2017; Knutti 

et al. 2017; Brunner et al. 2019).  

It is also evident that most models and ensemble 

means exhibit higher performance during the winter 

(DJF) compared to the summer (JJA) which aligns with 

Tangang et al., (2020) findings. However, this is not a 

case in the study by Tuyet et al., (2019), which also 

assessed the same models, but they presented a Taylor 

diagram based on an annual time scale that may not be 

reliable due to the strong seasonal contrasts in 

precipitation distribution in the SEA region. To 

accurately capture these seasonal contrasts, the 

evaluation should be conducted for specific seasons 

(Nguyen et al., 2022).   

Temporal-Based Evaluation  

This section examines the seasonal to inter-annual 

variability of modeled and observed rainfall by 

employing a wavelet analysis (Jiang et al., 2013; Chao 

et  al.,  2014).  This  method  is  superior  to  the  power  

 

 
Figure 8.  .Wavelet profile of the SEA mean precipitation variability. The T value represents the similarity pattern to 

the reference (ERA5). 
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Table 2.   Summary of models and ensemble means with the highest skill scores. 

Aspect of performance 

evaluation 
Model Score 

Ensemble mean 

Type Score 

Spatial mean in DJF season CNRM_a 0.83 
Rand 

SS 

0.93 

0.91 

Spatial mean in JJA season CNRM_a 0.80 
Rand 

SS 

0.87 

0.87 

Zonal mean 
CNRM_a 0.85 Rand 0.97 

GFDL_b 0.85 SS 0.96 

Taylor diagram in DJF season GFDL_b * 
Rand 

SS 

* 

* 

Taylor diagram in JJA season CNRM_a * 
Rand 

SS 

* 

* 

Wavelet GFDL_b 0.46 Tian 0.14 

FFT GFDL_b 0.80 
MME 

Tian 

0.85 

0.85 

Note: Rand = Random; SS = Pierce; Tian = Tian’ skill score; MME = Multimodel Ensemble Mean 

 

spectral was used by Siew et al., (2014). The modes are 

related to monsoonal ENSO and IOD teleconnections, 

and pacific decadal oscillation (Mantua and Hare, 

2002).  In  this  context,  the  wavelet  were  constructed 

from the time series of mean rainfall data in the model 

datasets. To quantitatively measures to the models' 

resemblance to reference dataset, Taylor’s skill score 

was utilized, and the outcomes are presented on each 

wavelet graph to facilitate comparison. It is evident in 

Figure 8 that most variability modes are concentrated 

within three dominant patterns with periodicities of 

approximately 1, 2-8, and around 16 years. The ENSO 

periodicity of  2-8 years is slightly different from Siew 

et al., (2014) (2-5 years), where they used GPCP 

(version v2.2) as the reference and power spectrum as 

the method.  

It is also clear that GPCP and ERA5 exhibit an 

almost identical pattern, with a similarity score of 0.94. 

However, for the ensemble mean types, all of them 

have a low similarity to the reference datasets. This 

finding requires further investigation as the ensemble 

mean generally outweighs all the individual model in 

most cases through cancelling out errors (Hagedorn et 

al., 2005; Weigel et al., 2014) or wet and dry bias 

(Nguyen et al., 2022) among models that occur during 

averaging operation. In addition, among the models, 

GFDL_b is the highest (0.46), followed by HadGEM2_a 

(0.45) and ECE_b (0.41). Conversely, the IPSL_b model 

performs poorly (0.04). 

The CNRM_a model, which previously exhibited 

superior performance, in this wavelet plot has a 

relatively low score (0.23). This discrepancy could be 

attributed to the fact that IPSL_b, being one of the 

members of the ensemble mean constituent, exhibited 

inferior performance across most evaluation stages. 

Due to the underwhelming performance of the IPSL_b 

model, it was excluded from the evaluation section 

that utilized new ensemble means without IPSL_b. 

Excluding a model of lower quality from ensemble 

mean formation is justifiable (Knutti et al., 2017). The 

outcomes of this new configuration (Figure A3 to A5) 

suggest that this revised configuration yielded 

significant alterations. This discovery affirms that the 

subpar skill observed across all ensemble means in the 

wavelet analysis is partly due to the subpar 

performance of the IPSL_b model. Consequently, 

further investigation is warranted to uncover the 

primary underlying causes. 

To compare the wavelet plot to other methods, 

we also present a Fast Fourier Transform (FFT) plot 

based on the period (Figure A6). These FFT plots 

demonstrate higher scores in comparison to the 

results obtained from wavelet analysis. All types of 

ensemble means (MME, WE_Taylor, WE_SS, and 

WE_Tian) exhibit higher similarity scores ranging from 

0.82 to 0.85, surpassing all individual models that 

range from 0.28 to 0.80. The GFDL_b is the model that 

has highest similarity score (0.80), followed by 

NorESM1_d (0.67). A summary of the varied abilities of 

the individual models, unweighted (MME) and the 

weighted ensemble means (Taylor, SS, Tian) is 

presented in Table 2. The model that has slightly lower 

score  than the best model is included in the summary 

as the additional comparison. For the Taylor diagram, 

it has no explicit score as it visually represent the 

models’ performance.  

This study revealed that no model consistently 

exhibits significant performance across all evaluation 

aspects in the Southeast Asia region. While on the 

temporal basis, they did not show better performance, 

on the spatial basis, the weighted ensemble means, 

especially WE_Ran, demonstrated better performance 
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than other models. This is somewhat aligned with 

(Bukovsky et al., 2019), who mentioned that the 

metrics and resulting weights do not significantly 

differentiate between the simulations. Among the 

individual models, the CNRM_a model demonstrated 

better performance, and this aligns with other studies 

(Tuyet et al., 2019; Kamworapan and Surussavadee, 

2017; Siew et al., 2014). 

CONCLUSIONS 

This study has evaluated the performance of the 

equally and unequally weighted ensemble mean of 

nine modeled precipitations in the CORDEX-SEA 

output models in historical period from 1981 to 2005. 

The weighting factors used were derived from the 

models' skill scores. The findings indicate that, when it 

comes to spatial performance, the weighted ensemble 

mean (WE_Rand) outperforms all other models, with 

CNRM_a showing the highest performance among 

individual models, followed by GFDL_b. When 

examining temporal aspects, all types of ensemble 

mean produces lower results than most individual 

models, while the individual model GFDL achieves the 

highest score, followed by NorESM1_d. Furthermore, 

eliminating the lowest-performing model has a 

significant impact on the ensemble mean's 

performance.  

These research findings are anticipated to provide 

valuable additional insights when selecting a more 

accurate ensemble mean for climate projection assess-

ments, particularly in Southeast Asia. Here are some 

practical strategies highlighting the advantages of 

using a weighted ensemble mean over an unweighted 

one or individual models, firstly, weighting models 

based on their historical performance or skill scores 

allows the ensemble mean to give more emphasis to 

better-performing models. This approach tends to 

improve overall climate projection accuracy and 

reliability compared to an unweighted ensemble or 

individual models. Secondly, models might have 

inherent biases or systematic errors. Assigning weights 

based on the ability of models to represent certain 

climatic features or historical accuracy can help correct 

biases in the ensemble mean, providing more realistic 

climate projections. 
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ANNEX 

Table A1. Reference datasets. 

Dataset Product Type* 
Spatial 

covered* 

Resolution, 

Time Covered 
Reference 

ERA5 

(https://cds.climate. 

copernicus.eu) 

Monthly 

averaged 

reanalysis 

   R All 

0.25o  

Monthly 

1950-present 

(Hersbach et al., 

2020) 

GPCP 

(https://esgf-node.llnl.gov/ 

search/obs4mips) 

 

v7-7A 
S, G All 

2.5o 

Monthly 

1979-2017 

(Adler et al., 

2018) 

*G = Gauge; S = Satellite; R =  Reanalysis; All = Land and Ocean 
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Figure A1. Taylor diagram illustrating the proximity of ERA5 (2) and GPCP (3) performance to GPCC (Global 

Precipitation Climatology Centre) and SAOBS (Southeast Asia Observation)  dataset during the DJF (left) 

and JJA (right) seasons.  

 
 
Figure A2.  Climatological mean rainfall from 1981 to 2005 in the SEA region in summer (JJA) season. The value inside 

the brackets represents the pattern similarity scores with the references (ERA5). MME (and four last 

figures) represents ensemble mean without (with) weighting factors. 
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Figure A3.   Zonally averaged annual cycle of precipitation (mm/month) in the SEA region for the new configuration 

(omitting IPSL). The value inside the bracket represents the pattern similarity of the model to the 

reference. 

 

Figure A4.  Taylor diagram of DJF (left) and JJA (right) season for new configuration (omitting IPSL), showing the 

performance of 8 models (A-H), ensemble mean (I), and weighted ensemble mean: Taylor (J), SS (K), and 

Tian (L). 
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Figure A5.   Wavelet profile of the SEA precipitation variability for new configuration (IPSL_b and PI weighting factor 

not included). The S value represents the pattern similarity with the reference (ERA5). 

 

Figure A6.   Plot of FFT for models (red) vs. reference (black) of the SEA precipitation variability. The value inside the 

bracket represents the pattern similarity with the reference (ERA5). 

 

 

 


