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 A B S T R A C T 
 

The compactness of buildings in Denpasar results in the formation of urban 

heat islands (UHI), which can be evaluated through the Urban Thermal Field 

Variance Index (UTFVI) and Environment Criticality Index (ECI). ECI was the 

ratio of land surface temperature to the Normalized Difference Vegetation 

Index (NDVI). It can be transformed into Temperature Criticality Value (TCV) 

using air temperature and Index-based Built-up Index (IBI). This study aims to 

identify the UHI intensity, the impact of land cover changes, and its 

association with the TCV in Denpasar, Bali.  The study employed Landsat 8 

imagery combined with field measurements data. The results demonstrated 

that land cover in Denpasar was mainly built-up areas that had grown from 

2015 to 2021. The UTFVI value confirmed the increased build-up areas as 

indicated by the intense UHI (>0.02), whereas the mean value of NDVI 

suggested a reduction in vegetation density. The density of built-up areas 

(IBI) had increased, while vegetation had decreased. The TCV value for 2015 

until 2021 suggested the increased critical environment condition. A transect 

analysis revealed that stronger UHI intensity, denser buildings, and a more 

critical environment were present in urban centers compared to the suburbs. 

The correlation coefficient (r) between TCV and UTFVI was relatively robust 

(0.75–0.82), indicating that the growth of UHI intensity was associated with a 

more critical environment. TCV had a strong correlation (r>0.80) with Built-

up Index but inverse correlation with NDVI. Therefore, limiting the expansion 

of built-up areas and increasing vegetation could help to control the 

environment's criticality. 
 
K E Y W O R D S  
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INTRODUCTION 

The transformation of vegetation into buildings 

can undoubtedly impact climate and environmental 

conditions, leading to an increase in urban air 

temperature due to changes in energy balance (Effendy 

et al., 2006; Li et al., 2022). This can result in the 

emergence of urban heat islands, which, when 

combined with alterations in land cover, can create 

hazardous conditions. These effects can be observed in 

all urban areas, including Denpasar City, the capital of 

Bali Province, which serves as a center for government 

and various employment opportunities (Hermanto et 

al., 2018). Between 2014 and 2017, Denpasar City 

experienced a growth of 222.42 hectares in settlements 

and 241.4 hectares in industry, trade, and service zones. 

Unfortunately, this expansion has resulted in the loss of 

178.54 hectares of mangroves, urban forests, and 

263.63 hectares of agriculture (Pratiwi and Citra, 2019). 

Research conducted by Zal et al., (2017) revealed 

a 7.65% reduction in vegetation between 2003 and 

2015 in Denpasar City, contributing to a 1.7°C increase 

in air temperature. Using building materials that reflect 

radiation more efficiently can also lead to a rise in the 

temperature of the surrounding air. On the other hand, 

vegetation can utilize solar energy during photo-

https://doi.org/10.29244/j.agromet.37.2.66-76
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synthesis, releasing less heat and cooler air 

temperatures (Yuan et al., 2021). Therefore, the 

conversion of vegetation to built-up areas can have a 

significant impact on the rise in air temperature. 

Urban development had the potential to create 

the urban heat island (UHI) phenomenon, which was 

characterized by an increase in air temperatures, as 

noted by Zahro et al., (2018). The UHI phenomenon 

refers to the temperature difference between the urban 

core and the surrounding suburbs, forming an island-

like spatial pattern (Lauriola, 2016). In areas affected by 

UHI, the air temperature is higher in the city center and 

decreases as it moves toward rural areas, according to 

Simwanda et al., (2019). Estimating the intensity of UHI 

is crucial because it can demonstrate how variations in 

air temperature impact critical environmental variables.  

Ranagalage et al., (2017) used the Environmental 

Critically Index (ECI) to spatially evaluate the critical 

environment caused by increasing surface tempera-

tures and decreasing vegetation. As Sharma et al., 

(2017) note, the assessment of environmental criticality 

had evolved to consider additional parameters such as 

built-up area and land wetness, in addition to surface 

temperature and vegetation index. Currently, the ECI 

still converts the value of each parameter into a digital 

number (DN), which represents the numeric value 

(byte) of each pixel in the image and typically ranges 

from 0-255 (Jaya et al., 2021). This study transformed 

the ECI into a Temperature Criticality Value (TCV) based 

on the air temperature parameter and an Index-based 

Built-up Index (IBI) to measure the built-up area. 

This study aims to investigate the potential 

formation of urban heat islands (UHI) in Denpasar City 

and its ecological implications by developing an 

environmental criticality assessment methodology 

using the Temperature Criticality Value (TCV). This 

research seeks to accomplish three primary objectives: 

firstly, to determine the severity of the UHI 

phenomenon; secondly, to assess the impact of land 

cover changes on UHI intensity; and thirdly, to examine 

the correlation between UHI and the temperature 

criticality value (TCV) in Denpasar City. 

RESEARCH METHODS 

Data Source 

The data used in this research were Landsat 8 

OLI/TIRS satellite imagery, the daily air temperature 

data from the Ngurah Rai Meteorological Station in 

January 2022, and field measurement data. The satellite 

imagery from Landsat 8 OLI/TIRS was collected in April 

2015, April 2018, and June 2021, with a spatial 

resolution of 30 m for visible bands and 100 m for 

thermal bands. The field data were collected using a 

standard Hygrometer to measure the air temperature 

(°C) and an infrared thermometer to measure surface 

temperature (°C) from January to March 2022. 

Image Processing 

 The data processing steps involved in this study 

consisted of various techniques such as the Maximum 

Likelihood method for supervised land cover 

classification, transforming the vegetation density 

index, extracting surface temperature, and estimating 

air temperature. The vegetation density was analyzed 

using the Normalized Difference Vegetation Index 

(NDVI) derived from the near-infrared (NIR) and red 

bands of the satellite imagery, as per Sharma et al., 

(2017). The land surface temperature was extracted 

using the split-window (SW) algorithm using bands 10 

and 11 of the Landsat 8 image, following Equation 1 

developed by Rongali et al., (2018). The air temperature 

was estimated by converting the land surface 

temperature using the sensible heat from the energy 

balance component, as per Equation 2 (Wiweka, 2014). 

LST = TB10 + C1(TB10 − TB11) + C2(TB10 − TB11)2

           +C0 + (C3 + C4W)(1 − m) + (C5 + C6W)Δm
 

  Ta = LST −
ra×H

ρa×Cp
 

where LST was land surface temperature (°C), TB was 

brightness temperature (°C), C0-C6 was split-window 

coefficients, m was mean emissivity, Δm was emissivity 

difference, W was total atmospheric water vapor 

content (0.013 g/cm2), Ta was air temperature (°C), ra 

was  aerodynamics  density, H  was  laten heat flux  

(Wm-2), ρa was air density (1.27 kg m-3), and Cp was 

heat capacity (1004 J kg-1 K-1). 

Field Measurements 

To obtain data measurements, transects were 

distributed from the city center to rural areas. The 

number of samples (n) for each transect line pixel (N) 

was determined using the Slovin method with an error 

tolerance of 0.1 (Equation 3). The Slovin method was 

suitable for determining the number of samples based 

on a purposive pattern, in this case, following the 

transects pattern. However, the number of the 

population used must be known. The field data was 

collected through measurements of surface 

temperature, air temperature, and land cover 

conditions. These measurements were used to verify 

the accuracy of the image data processing results. 

    n =
N

1 + Ne2
 

Data Accuracy Test 

 The land cover classification accuracy was 

evaluated using overall accuracy and kappa statistics 

(Equation 4 and Equation 5) (Sampurno and Thoriq, 

2016). To eliminate the effect of measurement time, 

(1) 

(2) 

(3) 
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surface temperature and air temperature were 

normalized using a sinusoidal function (Monteith and 

Unsworth, 2013). The air temperature was normalized 

to 2.23 UTM according to the image data. The accuracy 

of surface temperature was assessed using the 

determination coefficient, while the accuracy of air 

temperature estimation was evaluated by comparing 

the data distribution of each land cover, the transect 

pattern, and measuring the Normalized Mean Absolute 

Error (NMAE) (Zahro et al., 2018). 

    Overall accuracy(%) =
Σi

rXii

N
× 100% 

    Kappa(%) =
NΣi

rXii−Σi
rXi+X+i

N2−Σi
rXi+X+i

× 100%  

where Xii was the number of reference pixels that 

corresponds to land use classification pixel, X+i was the 

number of pixels resulting from land use classification, 

X+i was the number of pixels of land use reference, r 

was number of land use classes, and N was the number 

of all reference pixels. 

Parameters Analysis 

The parameter analysis in this research involved 

identifying the urban heat island (UHI) phenomenon, 

the Index-based Built-up Index (IBI), the Temperature 

Criticality Value (TCV), and analyzing the relationship 

between each parameter. UHI was analyzed by 

classifying air temperature and the Urban Thermal Field 

Variance Index (UTFVI) (Equation 6). Air temperature 

values were classified based on their mean and 

standard deviation (Amindin et al., 2021). Where Ta 

represented air temperature (°C), and Tm represented 

mean air temperature (°C). The analysis of the 

relationship between each parameter involved 

evaluating the impact of changes in land cover on the 

intensity of UHI and investigating the correlation 

between UHI and the TCV in Denpasar City.  

    UTFVI =
Ta−Tm

Tm
  

The IBI (Equation 7) was created by combining the 

Normalized Difference Built-up Index (NDBI), which 

serves as the base of the built-up index (Equation 8), 

the Normalized Difference Vegetation Index (NDVI) as 

the vegetation index (Equation 9), and the Modified 

Normalized Difference Water Index (MNDWI) as the 

wetness index (Equation 10). This built-up index is more 

sensitive to pixels representing water bodies and 

vegetated land. NDBI was derived from a combination 

of short-wave infrared (SWIR) and near-infrared (NIR) 

bands, while MNDWI was obtained from the green and 

SWIR bands (Xu et al., 2013).  

    IBI =
NDBI −  

NDVI + MNDWI

2

NDBI +
NDVI + MNDWI

2

 

    NDBI =
SWIR1 − NIR

SWIR1 + NIR
 

    NDVI =
NIR − Red

NIR + Red
 

    MNDWI =
Green − SWIR1

Green + SWIR1
 

 The Temperature Criticality Value (TCV) was a 

modification of the Environmental Criticality Index (ECI) 

used to identify critical environmental conditions. In a 

study by Sasmito and Suprayogi, (2018), ECI was 

measured using land surface temperature and Built-up 

Index (BU), which was the difference between NDBI and 

NDVI (Equation 11). Another study by Sharma et al., 

(2017) added the wetness index (NDWI) to ECI, but this 

approach stretched the parameters and ignored the 

temperature factor (Equation 12). TCV was developed 

to improve the ECI results by replacing BU with IBI, 

including the wetness factor and adjusting the surface 

temperature to air temperature, directly impacting 

human activities (Equation 13). TCV was defined as the 

critical air temperature value in degrees Celsius that 

results from the impact of built-up land compaction on 

the built-up index (°C.IBI).  

    ECI = LST × BU = LST × (NDBI − NDVI) 

    ECI =
LST + NDBI

NDVI + NDWI
 

    TCV = Ta × IBI 

where LST was surface temperature (°C) and Ta was air 

temperature (°C). 

To identify the critical area, TCV was divided into 5 

classes with threshold values based on the average 

value and standard deviation, as was the case with the 

UHI classification in Table 1 (Amindin et al., 2021). 

Table 1. .Temperature Criticality Value (TCV)   

..classification and its threshold value. 

Class of TCV Treshold 

Very Good TCV ≤ TCVm – 1.5std 

Good TCVm – 1.5std < TCV ≤ TCVm - std 

Moderate TCVm - std < TCV ≤ TCVm + std 

Critical TCVm + std < TCV ≤ TCVm + 1.5std 

Very critical TCV > TCVm +1.5std 

The distribution of UTFVI, IBI, and TCV was 

analyzed by examining their patterns along the 

transects from the city center to rural areas. This 

analysis  aimed  to  determine  how  these  parameters   

were distributed in different areas. Additionally, the 

relationship between these parameters was evaluated 

using a correlation test. Correlation test used to assess 

the strength of association between two or more 

variables (Azhari et al., 2017). 

(4) 

(5) 

(6) 

(11) 

(12) 

(13) 

(7) 

(8) 

(9) 

(10) 
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Figure 1.  The land cover distribution on Denpasar City for 2015, 2018, and 2021 based on Landsat imagery. 

RESULTS AND DISCUSSION 

Land Cover Changes 

During the three years of observation, Denpasar 

City was dominated by built-up areas, as showed in 

Figure 1. Water bodies such as bays, reservoirs, and 

rivers were presented, and mixed vegetation 

(dominated by mangroves) and agricultural land were 

mostly distributed in the suburbs. There was minimal 

bare space area. In the 2021 classification, clouds and 

their shadows were removed during the quantification 

process. 

The land cover analysis showed that the area of 

water bodies and mixed vegetation increased from 

2015 to 2018, but decreased in 2021. Conversely, the 

bare space area fell in 2018 but raised in 2021. The 

built-up area had the highest increase, from 54.70% in 

2015 to 59.35% in 2021, while agricultural land had the 

highest degradation, decreasing from 27.00% in 2015 

to 22.16% in 2021. The transformation of land cover 

types was observed, with water bodies being 

transformed into agricultural land (20.17%) and built-

up areas (13.81%); mixed vegetation into built-up areas 

(18.06%); agricultural land into bare space (11.32%) and 

built-up areas (12.14%); and plain space into 

agricultural land (20.29%) and built-up areas (17.18%). 

The conversion of built-up areas to agricultural 

and bare space was minimal, accounting for less than 

2% of the total. On the other hand, there was a 

significant conversion of land cover to built-up areas, 

totaling 792.52 hectares, while agricultural land was 

degraded by 1137.10 hectares. The land cover 

classification showed an overall accuracy rate of 94.01%, 

indicating excellent results. The kappa value obtained 

was 87.34%, classified as almost perfect agreement. 

Therefore, the classification results can be considered 

representative of the study area (Alkaradaghi et al., 

2018). 

Land Surface Temperature 

The surface temperature of Denpasar City 

exhibited a range from 28°C to 40.5°C in 2015, 22.9°C 

to 40.4°C in 2018, and 24.9°C to 40.8°C in 2021. The 

maximum surface temperature increased, but the 

minimum surface temperature decreased from 2015 to 

2021. Urban centers had warmer surface temperatures 

than the suburbs. The coefficient of determination (R2) 

between the estimated surface temperature and field 

measurements was found to be 0.953 for water bodies, 

0.802 for mixed vegetation, 0.621 for agriculture, 0.845 

for bare space, and 0.605 for built-up areas. This 

indicates a one-way relationship between the 

estimated surface temperature from the image and the 

field measurements. The image estimation matched the 

pattern of the field measurements, indicating it was 

reliability for further analysis. 

Air Temperature 

Urban centers in Denpasar City had warmer air 

temperatures than suburban areas, predominantly 

covered by vegetation. Although the maximum 

temperature remained relatively stable throughout the 

three observation years, the minimum temperature in 

2018 was lower than in the other years. To compare the 

air  temperature  distribution  between  field  measure- 

ments and image estimations, the 2021 image 

estimation results were analyzed, assuming minimal 

land cover changes (Figure 2). The image estimation 

showed a more distributed air temperature pattern 

than the field observations, with similar pattern.  

 



Putra et al./Agromet 37 (2): 66-76, 2023 

70 

 
Figure 2.   Variation of air temperature (°C) for each land cover from field measurement and image estimation. Box-

plot indicates Q1, median, Q3, and dots represent outliers with whisker in percents 10% and 90% quantile. 

The field measurements and image estimation 

data results indicated that the average air temperature 

was highest in the built-up area, followed by bare 

space. The densest air temperature distribution in both 

field measurements and image estimation was found in 

water bodies. The air temperature pattern observed in 

each transect was similar, with temperatures increasing 

in urban centers and decreasing in the suburbs. The 

Normalized Mean Absolute Error (NMAE) values for 

water bodies, mixed vegetation, agriculture, bare space, 

and built-up areas were 7.18%, 7.69%, 8.27%, 6.61%, 

and 16.84%, respectively. The overall error rate was 

14.32%, less than 30%, indicating that the data were 

representative of the study area and can be used for 

further analysis (Zahro et al., 2018). 

Urban Heat Island 

According to the air temperature classification, 

there was an increased in the very cold air temperature 

category in Denpasar City in 2021, as shown in Figure 

3. The UHI phenomenon, indicated by a pattern of hot 

and very hot air temperatures resembling an island in 

the city center, had been presented since 2015. 

However, the air temperature in the very hot category 

had decreased each  year  of  observation. In  contrast  

areas with moderate air temperature conditions had 

expanded as very cold and cold air temperatures had 

decreased. 

Accorded to Figure 4, the UHI intensity in the study 

area increased from 2015 to 2018 but decreased in 

2021. This  increase  could  be attributed to the growth  

of built-up areas with a lower albedo and higher heat 

storage capacity than vegetated land. It can also be 

observed that UHI intensity was higher in urban centers 

compared to suburban areas and tended to occur more 

in built-up areas than in vegetated land. The UTFVI can 

be  divided  into  six  classes,  ranging  from non-UHI to

 
Figure 3.  Urban Heat Island (UHI) distribution of Denpasar City in 2015, 2018, and 2021. 
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Figure 4.  Urban Heat Island (UHI) intensity distribution based on Urban Thermal Field Variance Index (UTFVI) of 

Denpasar City in 2015, 2018, and 2021. 

strongest UHI. The study area had a dominant presence 

of the strongest UHI (>50%) and non-UHI space (>40%) 

in the three years of observation. Areas with the 

strongest intensity expanded during this period, unlike 

non-UHI areas. Although the UHI intensity decreased in 

2021, it was essential to address this issue as the study 

area still had a dominant presence of the strongest UHI, 

which can had adverse effects on the environment and 

human health. 

Vegetation Index (NDVI) 

The vegetation index in Denpasar City showed a 

decrease in vegetation density from 2015 to 2021, as 

evidenced by the range of values for each year and the 

reduction in mean NDVI distribution. The data 

distribution was positively skewed due to the higher 

frequency of rare vegetation data compared to dense 

vegetation data. The NDVI was classified into water 

bodies, bare soil, sparse vegetation or built-up areas, 

moderate vegetation, and dense vegetation. Denpasar 

was dominated by sparse vegetation or built-up areas, 

which  increased  yearly.  The percent of moderate and 

dense vegetation, representing green open spaces, was 

very low, less than 1% in 2018 and 2021. The total area 

of green open spaces decreased to 20.03% in 2021. 

Built-up Index (IBI) 

The IBI (Index-based Built-up Index) values in 

Denpasar City for 2015 ranged from -0.431 to 0.178, for 

2018 went from -0.392 to 0.187, and for 2021 went from 

-0.418 to 0.189. The maximum IBI value indicated 

increasing compacted built-up areas in Denpasar City. 

The average IBI distribution also showed an increase in 

building density every year of observation. The 

distribution of IBI data was opposite to that of NDVI, 

which  had  a  negative  skewness  due  to  the median  

 
Figure 5.  Temperature Criticality Value (TCV ) of Denpasar City in 2015, 2018, and 2021. 
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Table 2.  The Temperature Criticality Value (TCV) threshold and its corresponding area in Denpasar City for 2015, 

2018, and 2021. 

Class of TCV 
2015 2018 2021 

Treshold Area (ha) Treshold Area (ha) Treshold Area (ha) 

Very Good < -5.26 1,026.71 < -5.59 1,138.01 < -5.16 1,142.39 

Good -5.26 - -3.89 1,308.78 -5.59 - -4.32 1,177.65 -5.16 - -3.82 1,035.98 

Moderate -3.89 - 1.56 7,025.46 -4.32 - 0.78 8,052.91 -3.82 - 1.56 8,162.26 

Critical 1.56 - 2.93 2,889.09 0.78 - 2.05 1,815.52 1.56 - 2.91 1,865.01 

Very critical > 2.93 329.96 > 2.05 395.91 > 2.91 374.37 

 

value being more significant than the average. This 

indicated that there was more data above the average 

(denser built-up areas) than below the average (less 

dense built-up areas). The bottom outliers in the IBI 

distribution were water bodies and dense mixed 

vegetation. 

Temperature Criticality Value (TCV) 

The TCV in Denpasar City had increased every year 

of observation, indicating a more critical environment 

(Figure 5). The built-up areas had a higher TCV and 

were more essential than the vegetated areas. The 

average distribution of TCV also increased, suggesting 

a worsening of the environment. The data distribution 

had a negative skewness, indicating that there were 

more areas with TCV above the average (more critical) 

than below the average. The lower outlier was dense 

vegetation, while the top outlier in 2018 was built-up 

areas. 

The threshold for TCV was determined based on 

the classification of air temperature in the UHI analysis, 

as described by Amindin et al., (2021). The study area 

was dominated by moderate TCV, which had expanded 

every year of observation. The area with very good TCV 

also grew, but the conditions of good and critical TCV 

tended to decrease. The area with critical TCV 

fluctuated during the three years of observation, 

increasing in 2018 and decreasing in 2021. The pattern 

of changes in TCV was almost identical to that of UHI 

distribution. When areas with very hot air temperatures 

decrease, areas with critical TCV also decrease (Table 2). 

The Relationship Between TCV with UBU, IBI, and 

Forming Index 

The  transect  analysis  of  Denpasar  City for each  

parameter highlighted the differences between the city 

center and suburban areas (Figure 7). The south-north 

transect demonstrated that the city center area had 

higher parameter values than suburban areas, primarily 

due to the dominance of built-up areas, mangroves in 

the south, and agricultural land in the north. On the 

west transect, the parameter values were higher than 

on the east transect, mainly due to the high density of 

built-up areas. The suburban area on the southwest 

transect had a low value due to the presence of water 

bodies, while the northeast area comprises agricultural 

land. On the northwest-southeast transect, the TCV and 

IBI parameters did not exhibit significant differences, 

but the UTFVI increased in the city center, while the 

suburban areas in the southeast had low values due to 

mangrove cover. The pattern indicated that the center 

to the west area, which was predominantly built-up, 

had a stronger UHI intensity and a  more critical 

environment compared to suburban areas dominated 

by vegetation,  in  line with  previous research  (Khan et 

al., 2021; Ranagalage et al., 2017; Sharma et al., 2017). 

The correlation between TCV and built-up indices 

such as NDBI and IBI was strong and positive (r=0.99), 

indicating that an increase in the built-up area leaded 

to a more critical environment. Conversely, NDVI and 

TCV showed a robust negative relationship, suggesting 

that reducing vegetation density leads to a necessary 

environment. While UTFVI and TCV had a strong   

relationship, it was not as strong as that between TCV  

and the built-up factor. The wetness factor (MNDWI) 

does not had a significant inverse relationship with TCV 

and only represent the condition of water bodies. The 

p-value<0.05 for the correlation of each parameter for 

three  different  years   indicated that  the  relationship 

Table 3.  Correlation coefficient and p-value each parameter for three years observation. 

Year 
TCV-UTFVI TCV-IBI TCV-NDVI TCV-MNDWI TCV-NDBI 

r p-value r p-value r p-value r p-value r p-value 

2015 0.80 0.001 0.99 0.000 -0.85 0.000 -0.43 0.000 0.99 0.000 

2018 0.75 0.000 0.99 0.000 -0.84 0.001 -0.45 0.000 0.99 0.000 

2021 0.82 0.000 0.99 0.000 -0.81 0.000 -0.49 0.000 0.99 0.000 
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Figure 6.   Transects pattern of Temperature Criticality Value (TCV), Built-up Index (IBI), Urban Thermal Field Variance 

Index (UTFVI), and moving average. 

between TCV and other parameters was significant, 

with a low statistical test error (Azhari et al., 2017). 

Discussion 

The conversion of agricultural land to bare space 

and built-up areas was a significant cause of land 

degradation in Denpasar City. According to BAPPEDA 

Kota Denpasar (2019), the city experienced a 35 ha 

decrease in irrigated agricultural fields between 2013 

and 2017 due to land conversion. This trend had 

continued, with built-up areas now dominating at 

62.22% and agricultural land accounting for only 

29.22% of the land cover in 2021 (Arcana et al., 2021). 

However, accurately identifying land cover changes 

through image classification was challenging, as there 

can be similarities in pixel tones, particularly between 
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water bodies, agricultural land, and mixed vegetation. 

The resulting land cover changes significantly impact 

urban thermal conditions, particularly surface and air 

temperatures. 

Urban areas with more built-up areas tended to 

had warmer surface and air temperatures than 

suburban areas dominated by vegetation which tend to 

be more relaxed. Urban thermal dynamics were 

influenced by various meteorological factors closely 

linked to changes in land cover, and one of these 

factors was albedo. Albedo referred to the ratio of 

reflected short-wave radiation to that absorbed at the 

earth's surface (Falasca et al., 2019), and surfaces with 

higher albedo values reflect more radiation, which in 

turn leads to an increase in air temperature due to the 

addition of sensible and latent heat in the atmosphere 

(Ghosh et al., 2018). Surfaces covered with building 

materials such as concrete, asphalt, and cement had a 

higher albedo value than vegetation, meaning that they 

reflect more radiation (Shamsudeen et al., 2022). 

Vegetation had cooling properties that regulate urban 

temperatures through evapotranspiration, which 

removes latent heat at near-surface temperatures. 

Additionally, the shading of the vegetation canopy also 

reduces radiation input to the surface, contributing to 

the cooling effect (Richards et al., 2020).    

According to field measurements and image 

estimation, the highest average air temperature was 

found in built-up areas, while the lowest was found in 

areas with vegetation. This relationship between air 

temperature and land cover was consistent, with built-

up areas having higher temperatures and vegetation 

having lower temperatures, as reported by Mukmin et 

al., (2016). Although image estimation produced higher 

values than field measurements, the normalized mean 

absolute error (NMAE) was less than 30%, which was 

influenced by meteorological factors such as 

cloudiness, rainfall, and radiation, as noted by Avdan 

and Jovanovska, (2016). The presence of dense and 

thick clouds and the possibility of rain can decreased 

air temperature by reducing the amount of incoming 

solar radiation that heats the surface. Despite a small 

error in air temperature estimation through image 

analysis, it can still be used for analyzing the urban heat 

island (UHI) phenomenon, as meteorological factors 

such as cloud cover, precipitation, and radiation can 

influence the accuracy of the estimation.  

Since 2015, Denpasar City had been experiencing 

the urban heat island (UHI) phenomenon, as evidenced 

by the presence of hot and very hot air temperature 

categories in the city center, which forms a pattern 

similar to an island. The most significant expansion of 

UHI was observed in areas with a decreased area 

without UHI, which could had been triggered by the 

development of the built-up area, showed an inverse 

relationship (Naim and Kafy, 2021). The increase in UHI 

intensity was also linked with a decrease in the 

vegetation index and an increase in built-up index. The 

intensity of UHI was further amplified due to the 

reduction in the green space area and the building 

density (Tepanosyan et al., 2021). 

Between 2015 and 2021, there was a decrease in 

the maximum and average value of NDVI. The decrease 

was associated with a reduction in green open space, 

indicated by the dense vegetation and medium areas 

classification, and an expansion of built-up areas, 

indicated by the sparse vegetation classification. This 

expansion of the built-up area was evident in the 

increased maximum value and average IBI. A study by 

Xi et al., (2019) also reported a similar inverse 

relationship between IBI and NDVI, where an increase 

in IBI was associated with a decrease in NDVI. 

Land cover changes had been identified as the 

cause of UHI phenomena, which impact the critical 

environment (Yang et al., 2017). In this study, the 

necessary environment referred to the change in urban 

thermal conditions resulting from vegetation, 

buildings, and land wetness dynamics, as represented 

by the Temperature Criticality Value (TCV). The TCV 

scores were higher in city centers than in the suburbs. 

Additionally, the Environmental Criticality Index (ECI) 

tended to be higher in city centers with denser 

buildings. The pattern of the critical environment area 

was similar to the distribution of UHI based on air 

temperature classification, which tended to be higher 

in urban centers. The strong relationship between the 

critical environment and the UHI phenomenon was due 

to the dynamics of urban air temperature, which were 

influenced by land cover changes (Fadlin et al., 2020). 

The transect pattern of UTFVI, IBI, and TCV 

parameters indicated that they were higher in the city 

center than in the suburbs, and TCV was strongly 

correlated with the built-up index (IBI and NDBI). This 

correlation was related to the albedo of the built-up 

land, which could increase the air temperature and 

strengthen the UHI intensity, resulting in a more critical 

environment. Similarly, the transect pattern and 

building compaction strongly correlated with a more 

critical environment (Khan et al., 2021). Although the 

correlation between NDVI and TCV was not as strong 

as the built-up index, it was still inversely proportional. 

The reduction of wetlands and vegetation could 

increase the environmental's criticality, disrupting the 

ecosystem's balance (Sharma et al., 2017). Therefore, 

there was a need to limit built-up land and 

harmoniously increase green open space to control UHI 

and environmental criticality. 
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CONCLUSIONS 

The maximum UHI intensity increased in Denpasar 

City and was dominated by the strongest UHI areas that 

expanded. Stronger UHI dominates the city center 

composed of built-up areas than the suburban 

composed of vegetation. Moreover, the expansion of 

the built-up and the decrease of vegetation caused an 

increase in air temperature. The strongest UHI areas 

were associated with a more critical environment, as 

evidenced by the strong correlation between UTFVI and 

TCV. Building compaction was the most significant 

factor contributing to the critical environment, as 

indicated by the closer correlation between TCV and 

built-up indices such as IBI and NDBI. While the 

vegetation index (NDVI) strongly correlates with TCV, it 

was not as strong as the built-up index. It was inversely 

proportional, indicating that decreased vegetation was 

a caused of increasing criticality in the environment. 

Therefore, balancing limitations on built-up areas and 

adding green open space was necessary to control UHI 

and environmental criticality in Denpasar City. 
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