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 A B S T R A C T 

Monitoring drought related to peat fire danger is becoming essentials due to 

the adverse impacts of peat fires. However, the current monitoring is mostly 

based on station data and has not yet covered all parts of peatlands. This 

research was carried out to initiate a spatial monitoring for peat fire, 

particularly in Jambi province. Our approach was simple by integrating 

Weather Research Forecasting (WRF) output with a drought-fire model. This 

research aims to: (i) calibrate rainfall, air temperature and soil moisture data 

from WRF output; and (ii) analyze temporal drought related to fire danger. A 

drought-fire model known as Peat Fire Vulnerability Index was applied with 

daily inputs of WRF output at 5km resolution, which were comprised of 

rainfall, air temperature, and soil moisture. The results showed that calibration 

reduced rainfall magnitude, and slightly increased the maximum air 

temperature and soil moisture. The calibration performance was good as 

shown by a very low percent bias (less than ±5%), and lower error (RMSE=16.5; 

MAE=9.5). Our analysis showed that drought triggered by El Niño in 2015 had 

escalated extreme fire danger class by 38% compared to normal year (2018). 

This has been confirmed by a low variation of proportion of extreme class 

during July-August 2015. The results suggested that integrating spatial global 

climate data will benefit to the improved drought-fire model by providing 

spatial data. The results are expected to be a reference on drought and peat 

fires mitigation action. 
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INTRODUCTION 

Peatland fires have become one of catastrophic 

disasters in Indonesia, particularly in dry season. The 

adverse impacts of peat fires became worse when it 

coincided with El Nino Southern Oscillation (Nurdiati et 

al., 2021; Pan et al., 2018; Taufik et al., 2017). In 2015, 

for example, fires coincided with strong El-Nino have 

devastated 2.6 million ha peatland (World Bank, 2016). 

Peatland fires produced thick haze (Hayasaka and 

Sepriando, 2018; Hu et al., 2018; Yulianti et al., 2020), 

which caused health hazard (Sharma and 

Balasubramanian, 2018; Uda et al., 2019; Zaini et al., 

2020) and disrupted both land and air transportation 

(Ismanto et al., 2019a, 2019b), as well as economic loss 

for about USD 16 million (World Bank, 2016). To 

overcome the future risk of recurrent peat fires, 

Indonesian government established Peat Restoration 

Agency (now is BRGM) with a mandate to restore the 

degraded peatlands in Indonesia, including Jambi.  

Jambi is one of the high priority provinces, which 

received the restoration program from BRGM. Its 

peatland covers about 0.6 million ha (9% of total peat 

land in Sumatera). Based on a critical level derived from 

land use, there was about 18% of peatland in Jambi 

https://doi.org/10.29244/j.agromet.36.1.1-10
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categorized into a very critical status (Nurjanah et al., 

2013). Currently, the dryness level of peatland in Jambi 

is monitored based on ground water level measure-

ment at several stations. However, the monitoring has 

not yet covered all the region of Jambi peatland. Thus, 

spatial monitoring, particularly for fire risk on peatland, 

is required.  

Peat fire is associated with drought events. The 

spatial monitoring for peat fire danger has been 

proposed earlier by integrating spatial climate data 

combined with drought fire model (Bourgeau-Chavez 

et al., 2020; Jolly et al., 2019). Spatial climate data can 

be derived from climate model, such as through 

Weather and Research Forecasting (WRF) model 

(Nuryanto et al., 2020; Sanusi et al., 2021). WRF model 

is widely used to generate climate data, including 

rainfall and air temperature (e.g. Chawla et al., 2018; 

Patel et al., 2020; Sati and Mohan, 2018; Teklay et al., 

2019; Yáñez-Morroni et al., 2018), since it can produce 

data in various spatial resolution (Tao et al., 2020), and 

it is able to forecast data up to 16 days (Skamarock et 

al., 2021). Furthermore, the WRF model can estimate 

soil moisture as proxy of groundwater table, which is an 

essential variable for calculating drought on peatland.  

There are some models which can be used to 

monitor drought related to forest fire danger, including 

Peat Fire Vulnerability Index (PFVI). PFVI is the 

advanced model of drought-fire index which was 

specifically designed for tropical peatland (Taufik et al., 

2022). It was based on Keetch Byram Drought Index. 

This model has been tested to assess fire events in 

Jambi dan West Kalimantan, which gave a good result. 

Yet, there is no previous study which integrate this 

model with spatial climate data in tropical peatland 

Indonesia. 

This research will assess drought-fire events in 

Jambi province from 2015 to 2018 by employing the 

output of WRF model to PFVI. This research specifically 

aims to: (i) calibrate rainfall, air temperature and soil 

moisture data from WRF output; and (ii) analyze both 

spatial and temporal drought related to fire risk. The 

results are expected to be a reference on drought and 

peat fires mitigation.  

 

RESEARCH METHODS 

Data Source 

To running the WRF model, we used Global 

Forecasting System (GFS) dataset produced by National 

Centers for Environmental Prediction (NCEP) as the 

data input. The GFS data has a spatial resolution of 0.5° 

and temporal scale of 3 hours. In this research, WRF 

model was set to produce climate data in spatial 

 
1 https://sigambut.hidro-ipb.com/  

resolution ~5km. The modeling was daily run for 2015 

to 2018 in which the analysis mainly focused on fire 

season. Based on the GFS data, the analysis was divided 

into four group periods of data (Table 1). Three 

variables used for drought-fire model, namely rainfall, 

air temperature, and soil moisture at level 1 was 

obtained from modeling. The WRF output data were 

then calibrated by the observed meteorological data 

obtained from Ogimet (https://www.ogimet.com/). The 

Ogimet’s climate data was selected only from several 

stations in surrounding of Jambi. Meanwhile, the 

observed soil moisture data was obtained from field 

measurement used by SiGambut1 calibration.  

Table 1. The range period of WRF output data for each 

group analysis.  

Group Range data 

Period1 Jan-Aug 2015 

Period2 Oct 2015-Apr 2016 

Period3 Jul 2016-Mar 2018 

Period4 May-Dec 2018 

 

WRF Model Setup 

Technically, there are two applications needed to 

be installed to run WRF model, i.e. WRF processing 

system (WPS) and WRF program. WPS is a program that 

determines model domains and interpolates terrestrial 

data. This research used two nested domains set in 

different spatial resolution, which were domain1 (d01) 

for 15km, and domain2 (d02) for 5km (Figure 1).  

The set up for WRF model, which will be run in 

WPS was written in file “namelist.wps”. It contained 

information about geographical positions of the area of 

interest, as well as resolution and extent data output. 

Furthermore, there are five libraries, which are needed 

to be prepared in the same directory with WRF model, 

namely NetCDF, MPICH, zlib, libpng, and Jasper. Those 

are used to read and process Global Forecasting 

System (GFS) as the input of WRF model based on 

specific location and time.  

 
Figure 1. The domains zona used in this research. 

 

d01 

d02 

https://sigambut.hidro-ipb.com/
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After that, the GFS data was processed using 

“ungrib.exe” program and interpolated horizontally 

using “metgrid.exe” program. The output of WPS 

model, in the form of a met em* file, was then analyzed 

by WRF model employing "real.exe" and "wrf.exe" 

programs. The "real.exe" program indicates that the 

model is running the system from real-world data in the 

atmosphere and on the earth's surface with physical 

weather parameters, while the "wrf.exe" program runs 

the parameter scheme ("namelist.input") arranged 

according to the needs of the weather prediction. 

In this research, we modified five weather 

physical parameters used in WRF model following 

Sanusi et al. (2021), namely cloud microphysical 

parameters, cumulus clouds (Cu), planetary boundary 

layer (PBL), long-wave radiation and short-wave 

radiation. These five physical parameters have a strong 

influence on WRF model’s result, particularly for rainfall 

data. The cloud microphysical parameters, i.e. Cu and 

PBL, were crucial for simulating precipitation and were 

likely to influence both the spatial and temporal 

variability of the rainfall data (Nuijens and Siebesma, 

2019; Zheng et al., 2017). Here, we followed the 

parameterization scheme resulted by Sanusi et al. 

(2021), which are listed in Table 2. The WRF model’s 

output named as wrfout_d02 was then converted to 

NetCDF data. The climate data was then processed 

using R language (R Core Team, 2016) to obtain 

hydrometeorological data needed. 

 

Calibration of WRF Output data 

Climate data derived from WRF model needs to 

be calibrated to represent local climate conditions. The 

calibration process was divided into two types, namely 

spatial-based calibration, and point-based calibration. 

Spatial calibration was applied to rainfall and air 

temperature, while the point-based was for soil 

moisture variable. For spatial, climate data from Ogimet 

stations were interpolated using inverse distance 

weighting (IDW) methods to derive spatial observed 

data. The IDW method had been proven better to 

correct rainfall data from WRF (Sanusi et al., 2021). The 

 

Table 2. The selected scheme for WRF parameters 

used in this research. 

WRF Parameters Selected Scheme 

cloud microphysics Eta Scheme 

cumulus clouds (Cu) Grell-Devenyi (GD) 

Ensamble Scheme 

planetary boundary 

layer (PBL) 

Mellor-Yamada-Janjic (MYJ) 

Scheme 

long-wave radiation Rapid Radiative Transfer 

Model (RRTM) Scheme 

short-wave radiation New Goddard Scheme 

WRF climate data (rainfall and air temperature) were 

then bias corrected using gamma quantile method 

(Piani et al., 2010). For point-based calibration, the soil 

moisture data were corrected using the pair of data 

between WRF output and field data, which were taken 

from previous work (SiGambut). The bias correction for 

soil moisture variable was based on scaling method. 

The correction process was done using package ‘hyfo’ 

(Xu, 2015) from R language program (R Core Team, 

2016). 

To evaluate the WRF model performance in 

predicting climate variables, we used five indicators of 

statistical goodness of fit, as follow: 

1. Root Mean Square Error (RMSE) 

RMSE is a statistical indicator used to estimate the 

error value of a data model (Harwell, 2019). The 

model's quality and accuracy will improve as the 

error value decreases, as indicated by a lower RMSE 

value. RMSE calculation based on Equation 1. 
 

𝑅𝑀𝑆𝐸 =  √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1    (1) 

 

where 𝑦𝑖 is the WRF model output data for day-i, 𝑥𝑖 

is the observation measurement data for day-i, and 

𝑛 is the total length of the data. 

2. Mean Absolute Error (MAE) 

MAE indicates accuracy model data compared to 

observed data. MAE value, which is closer to 0, 

shows the higher model’s accuracy. Equation 2 is the 

mathematical term to calculate MAE. 
 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖−𝑥𝑖|𝑛

𝑖=1

𝑛
    (2) 

 

3. Nash-Sutcliffe Efficiency (NSE) 

NSE calculates the relative value and residual 

variance of observational data in comparison to the 

variance (Tegegne et al., 2017). The NSE value 

ranges between ∞ and 1. The closer to one means 

the smaller the residual value, which indicates that 

the model output data is better and more 

acceptable. Equation 3 is used to calculate NSE 

value. 
 

𝑁𝑆𝐸 = 1 − [
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑(𝑥𝑖−𝑥𝑚𝑒𝑎𝑛)2]   (3) 

 

4. Percent Bias (PBIAS) 

PBIAS is used to determine the average trend of 

greater or lesser trends in model data compared to 

observed data. The lower bias value indicates by 

PBIAS value close to zero. Positive PBIAS value 

means model data underestimate, whereas negative 

PBIAS value means overestimation. Equation 4 

shows the formula for calculating PBIAS. 
 

𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑥𝑖−𝑦𝑖)×100𝑛

𝑖=1

∑ 𝑥𝑖
𝑛
𝑖=1

]   (4) 
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5. Pearson Correlation (r) 

The correlation is derived from the linear 

relationship between model and observed data. 

Positive correlation value means a one-way 

relationship between the model and the 

observation data, while the negative value means 

the inverse relationship. The range value for 

Pearson's correlation is between -1 and 1. The closer 

value toward 1 or -1 indicates the stronger 

relationship between model and observed data. 

Meanwhile, low correlation value, which is close to 

0, shows the weaker the relationship. Equation 5 

depicts the Pearson Correlation calculation. 
 

𝑟 =  √1 − (
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−𝑦𝑖)
2

𝑛
𝑖=1

)   (5) 

                                                                  

Drought-Fire Model for peatland 

To quantify drought potency related to fire 

danger in Jambi, we integrated PFVI model with 

corrected WRF climate data. The drought model is 

formed by three predictors, namely drought factor (DF), 

rainfall factor (RF), and water table factor (WTF), and 

they were calculated on daily basis (Equation 6). The DF 

is the only factor which increase the drought index, 

while RF and WTF have a role as deduction of index 

value. DF were calculated based on maximum air 

temperature (𝑇) and annual rainfall (𝑅𝑜) as shown in 

Equation 7. In this research, annual rainfall in Jambi is 

about 2,500 mm. 
 

𝑃𝐹𝑉𝐼𝑡 =  𝑃𝐹𝑉𝐼𝑡−1 + 𝐷𝐹𝑡 − 𝑅𝐹𝑡 − 𝑊𝑇𝐹𝑡  (6) 
 

𝐷𝐹  
𝑡 =

(300−𝑚𝐾𝐵𝐷𝐼𝑡−1)×(0.4982𝑒(0.0905×𝑇+1.6096)−4.268)×10−3

1+10.88𝑒(−0.001736×𝑅𝑜)  (7) 
 

where 𝑡  is at daily resolution, 𝑇  maximum air tem-

perature (°C), and 𝑅𝑜 annual rainfall (mm). 

The RF parameter was calculated as the net 

rainfall, which accumulated in a day. There are three 

conditions used to calculate the net rainfall (Equation 

8). The 5.1 mm reduction in rainfall refers to rainfall 

interception in vegetation cover. The WTF parameter 

was originally calculated based on the ground water 

level data. Yet, in this research, we employed the spatial 

soil moisture data from WRF to calculate the WTF 

parameter (Equation 9). Soil moisture data were then 

rescaled to represent the state of wetness condition 

based on fitting process done by Taufik et al. (2022). 
 

𝑅𝐹𝑡 =  {

(𝑅𝑡 − 5.1) ;  𝑅𝑡 ≥ 5.1 𝑚𝑚/𝑑𝑎𝑦

𝑅𝑡 ;  𝑅𝑡−1 ≥ 5.1 𝑚𝑚/𝑑𝑎𝑦 𝑎𝑛𝑑  𝑅𝑡 ≥ 5.1 𝑚𝑚/𝑑𝑎𝑦

0 ;  𝑅𝑡 < 5.1 𝑚𝑚/𝑑𝑎𝑦

 (8) 

 

𝑊𝑇𝐹𝑡 = 5.67 − 0.116 × 𝑠𝑚∗   (9) 
 

where 𝑅 denotes daily rainfall (mm), and 𝑠𝑚∗ rescaled 

daily soil moisture.  

In this research, PFVI index ranges from 0 to 300 

followed the research finding by Taufik et al. (2022). 

Zero means moisture at saturated level, while 300 

represents the driest moisture at wilting point. For 

initial value of index, we set four different number for 

each period, which are 100, 250, 200, and 200 for 

period1 until period4, respectively. The initial numbers 

were based on the climate condition of each first 

month. For spatial and temporal analysis, the drought 

index was then classified into four categories, namely 

low, moderate, high, and extreme (Table 3). All 

calculation and analysis were done by using R language 

program.  

 

Table 3. The Peat Fire Vulnerability Index (PFVI) 

classification. 

PFVI value Category 

0-75 Low 

76-150 Moderate 

151-225 High 

226-300 Extreme 

 

RESULTS AND DISCUSSIONS 

Corrected WRF Output  

The WRF rainfall data were calibrated using 

several observed rainfall data, which was interpolated 

into spatial rainfall using inverse distance weighting 

(IDW) method.  In general, the correction results of WRF 

data for rainfall variable showed that the original WRF 

output were overestimate. It was confirmed by the 

statistical distribution data shown in boxplot (Figure 2). 

The uncorrected rainfall data had median value about 

18 mm/day, while the median for the corrected one was 

about 5 mm/day. The range value (first quartile to the 

third) was also decreased by about a half in comparison 

between before and after correction. 

Based on the indicator goodness of fits value 

between WRF output and observed data, there were 

significant improvement of the WRF data after 

correction process (Table 4). For rainfall, the average 

RMSE and MAE scores decreased by about a half. The 

decrease was from 28.1 to 16.5 for RMSE, and 16.5 to 

9.5 for MAE. All NSE values had the negative results but 

the numbers for after correction substantially 

decreased. The bias correction result was mostly shown 

on the PBIAS value, which plummeted from 123.8 to 1.6 

in negative average value. Specifically, the corrected 

data mostly had a positive PBIAS, which means the 

corrected WRF data was lower than the observed one 

(underestimate). Only in period3, the PBIAS was still in 

negative value. The correlation had the least changes 

between before and after correction among the other 

indicators.
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Figure 2. Comparison the boxplot of WRF rainfall data before (red) and after (blue) correction process for each year 

analysis during 2015-2018. The y-axis is limited to 100 mm as not many rainfalls exceed the value. 
 

For air temperature, the values goodness of fits 

for corrected WRF output had a small difference than 

the uncorrected one. The difference was due to the low 

variability of air temperature in tropical region. It also 

indicated that the original WRF data could be used in 

calculation. Spatially, after calibration, the corrected 

temperature was higher than the uncorrected WRF 

output. An increase pattern was observed in most part 

of Jambi peatland at least 0.5°C (Figure 3a).  

Soil moisture data was not corrected by spatial 

observed data, yet it was based on the factor bias 

correction, which was resulted from WRF and observed 

data in 2019. Overall, the bias correction process 

resulted the higher value of soil moisture (Figure 3b). In 

all periods of data correction, the corrected data 

ranged between 0.5 and 0.7. Those values were about 

0.2 higher than the uncorrected soil moisture, which 

varied from 0.2 to 0.4. 
 

Table 4. Indicators of statistical goodness of fit for calibration WRF output (rainfall and maximum air 

temperature) for four different periods of analysis in Jambi peatland. 

Period Range of Data 
Statistical 

Indicator 

Rainfall Maximum Air Temperature 

Uncorrected Corrected Uncorrected Corrected 

Period1 Jan-Aug 2015 

RMSE 36.44 12.55 1.33 1.08 

MAE 15.65 7.11 1.08 0.83 

NSE -10.96 -0.31 -0.64 -0.03 

PBIAS -132.19 3.78 2.08 0.00 

r 0.02 0.10 0.43 0.42 

Period2 Oct 2015-Apr 2016 

RMSE 20.94 15.28 1.29 1.20 

MAE 16.40 9.43 1.07 0.97 

NSE -1.81 -0.44 -0.65 -0.36 

PBIAS -132.72 5.41 0.54 0.00 

r 0.10 0.13 0.37 0.36 

Period3 Jul 2016-Mar 2018 

RMSE 34.40 18.55 1.30 1.20 

MAE 18.84 10.60 1.05 0.96 

NSE -5.33 -0.72 -0.77 -0.47 

PBIAS -152.19 -19.79 0.73 -0.01 

r 0.01 0.03 0.31 0.31 

Period4 May-Dec 2018 

RMSE 20.51 19.65 1.14 0.99 

MAE 15.20 11.08 0.92 0.80 

NSE -0.48 -0.35 -0.76 -0.29 

PBIAS -78.15 3.97 1.41 0.00 

r 0.14 0.14 0.32 0.31 
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Figure 3. Comparison of average value between uncorrected and corrected WRF data for Jambi peatland. The number 

on each sub-title denotes the period of data. 

 

Drought-fire danger in Jambi Peatland 

Drought vulnerability in Jambi’s peatland was 

quantified by integrating corrected climate data from 

WRF model with drought-fire model. Since the 

peatland is usually burned in dry season, the drought 

analysis only focused on July and August each year of 

2015-2018. Based on the annual analysis of PFVI 

classification (Table 5), 2015 had the highest proportion 

of high and extreme classes, which was up to 80%. In 

specific, the highest proportion of peatland area for 

only extreme class was occurred on 1 August 2015 

covered more than 60% (Figure 4a). In 2016, the 

percentage of high and extreme classes decreased to 

less than 50%, and the highest one was the moderate 

class (48%). The similar proportion class was also found 

in 2018. The different proportion was found in 2017, 

where the high class became the highest (accounted for 

about 38%). Yet, the accumulation for high and extreme 

class was exceeded 60%. In the daily proportion, the 

highest extreme class proportion in 2017 was 

happened on 5 August having up to 68% (Figure 4c).  

The proportion of drought class was analyzed on 

the daily timescale (Figure 4) to obtain general pattern 

of drought class each year. In general, the class 

proportion in 2015 has the least variability during dry 

season compared to others. In 2016 (Figure 4b), there 

were several days when all peatland area were included 

to moderate class (10-12 July). There was no area 

classified into extreme in July 2016. In August 2016, 

however, the extreme class emerged, and it rose to 42% 

in two weeks. The drought class proportion in 2017 had 

the highest variability (Figure 4c). From July to the early 

August, the extreme class gradually increased from 

about 10% to the highest point (68%) on 5 August. The 

extreme was then dropped to the initial value in only 

about 12 days. For 2018 (Figure 4d), even though the 

overall proportion was similar with that of 2016 (refer 

to Table 4), it had a different pattern of daily class 

proportion change. Started from the end of July, the 

extreme class was only fluctuated between 10-30%. 

 

Table 5. Annual proportion of each Peat Fire 

Vulnerability Index (PFVI) classification in 

Jambi peatland from 2015 to 2018. 

PFVI 

Class  

Annual Proportion (%) 

2015 2016 2017 2018 

Low 3,68 3,15 8,34 5,72 

Moderate 16,03 48,79 24,91 44,13 

High 32,03 35,14 37,78 39,30 

Extreme 48,26 12,92 28,96 10,85 
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Figure 4. Dynamics of the daily proportion of fire danger class in Jambi peatland from 2015 to 2018. 
 

Next, we analyzed the occurrence of extreme 

class in each month. This information was presented in 

occurrence dates and summarized in Table 6. Overall, 

the extreme class in 2015 had the highest frequency 

compared to the other years. The extreme class was 

almost recorded in every day. Other classes were barely 

found in 2015. The second most frequent of extreme 

classes was in 2017. It was started at the end of March 

and continued until the early October. The other two 

years, 2016 and 2018, had two periods of months 

contained extreme class, and 2018 was more frequent. 

The first period was in Feb-Mar, while the second was 

Jul-Oct. Year of 2016 became the least frequent since it 

only had 6 days of extreme class in the first period and 

76 days in the second period. 

 

Table 6. Dates of occurrence of the extreme class on Jambi peatland from 2015 to 2018. 

Month 2015 2016 2017 2018 

Jan 1-26, 28-30 - - - 

Feb 2-28 - -  11-28 

Mar 1-31 17-21, 30 31  1-3 

Apr 1-30 - 1-6 No Data 

May 1-17, 19-31 No Data 28-31 - 

Jun 1-30 No Data 1-30 - 

Jul 1-31 - 1-31  13-31 

Aug 1-29 3-31 1-31  1-31 

Sep No Data 1-30  1-30  1-30 

Oct 1-31 1-15, 27-28  1-6  1-20 

Nov 1-30 - - - 

Dec 1-26, 28-30 - - - 
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Limitation of Model 

There are several limitations, which can be 

potential drawbacks to this study. First, the WRF data 

was calibrated based on the interpolated climate data, 

which may lead to another bias from the interpolation 

process itself. In addition, we only used the meteo-

rological data from the nearby airport, which are closely 

located to study site. A similar approach was used to 

calibrate global climate data based on meteorological 

station (Harris et al., 2020; Yue et al., 2021).  

Second, there were an uncertainty about the use 

of soil moisture data as the input of WTF parameter. In 

this research, the ground water was approached by the 

function of upper soil moisture data from WRF model 

rescaled to a certain range, which may not represent 

actual groundwater depth at 5km resolution.  

Third, we used four different initial index value 

for each period. According to the original model, the 

initial index value should be set as saturated peatland 

condition (Taufik et al., 2015). Based on the mentioned 

limitation of this study, further work is necessary on 

employing climate data covering peatland area for WRF 

calibration, addressing the WTF parameter input for 

spatial calculation, and determining the suitable index 

value for initial condition. This research has provided 

the scientific foundation for further research on the 

enhancement of monitoring drought-fire risk for 

tropical peatland. 

CONCLUSION 

Drought analysis for peatland can be done by 

integrating spatial climate data from climate model 

combined with drought fire model. The climate data, as 

the input of drought model, needs to be calibrated to 

represent local climate conditions. The results showed 

that WRF calibration process reduced rainfall 

magnitude, and slightly increased the maximum air 

temperature and soil moisture. The bias correction’s 

performance was good as shown by statistical 

indicators used. Furthermore, Jambi peatland had the 

highest proportion of extreme class of fire danger in dry 

season 2015. The daily changes of extreme class’ 

proportion during July-August in 2015 was weakly 

fluctuated. The peatland experienced extreme class 

almost every day throughout the year of 2015. This 

research had several limitations, such as using a limited 

observed data, having an uncertainty about the water 

table factor parameter, and assuming certain numbers 

as the initial index. These drawbacks could be more 

exploited as further research on spatial peat fire 

monitoring. 
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