PEMODELAN SISTEM DINAMIK PENILAIAN KESESUAIAN AGROKLIMAT BERDASAR HUBUNGAN RADIASI DAN CURAH HUJAN DENGAN FASE PERTUMBUHAN TANAMAN KELAPA SAWIT

(Dynamic System Modeling of Agroclimate Land Suitability Base on Relationship of Radiation and Rainfall with Growth of Palm Oil)

Lukman H Sibuea ${ }^{1}$, Hidayat Pawitan ${ }^{2}$, Yustika S. Baharsyah ${ }^{2}$ dan Yonny Koesmaryono ${ }^{2}$ Syarifuddin Karama ${ }^{3}$ dan Rokhmin Dahuri ${ }^{2}$
${ }^{1}$ Balai Penelitian Agroklimat dan Hidrologi
${ }^{2}$ Institut Pertanian Bogor
${ }^{3}$ Staf Ahli Departemen Pertanian

Abstract

Land Suitability is part of resources potential assessed by relationship between climate parameters and plant growth as naturally has a dynamic and time series characteristic for certain plant commodity. Research was conducted by using the data on climate and oil palm productions of Pasir Mandoge, Marihat, Torgamba and Bekri plantations. Those plantations represent the land units classified as very high to very low productivity respectively. The aims of this research are to construct a model which can assess land suitability that comprises the class, sub class, and sub-sub class level of evaluation. This assessment provides information on land production level, constrained by climate parameters, the phases of plant growth which will be constrained by climate parameters. This information is useful for oil palm plantation detail management and plantation development. The study of the criteria of climate parameter suitability in every phase of plant growth was done base on empirically method, To determine the land suitability was done by using the weighing-numerical, mathcing, scoring method and accumulating of the scores. The model was indicated that it was valid to explain that Marihat oil palm plantation can be classified as ($\mathrm{Sl}: \mathrm{rs}_{2}, \mathrm{klt}^{2}, \mathrm{ch}_{3}, \mathrm{~m}_{3,5}$) .It means that the plantation is very suitable for oil palm but it has constrained in total radiation ($357 \mathrm{kal} \mathrm{cm}^{-2}$ $h^{r^{-1}}$) is too low along all the phases of the plant growth, and average soil water content about (29.45 mm $d a y^{-1}$) is too high in the sex differentiation phase. Aplication of model using the ten years daily rain fall data indicated that Bekri palm oil plantation agroclimatic land suitability has dinamic characteritic. Although the agroclimatic land suitability Bekri palm oil plantation generaly was classified as S4: klt rs but it is posible to improve it to be S3: klt rs by increasing the daily soil water content from $15 \mathrm{~mm}^{\text {day }}{ }^{-1}$ to $21 \mathrm{~mm} \mathrm{day}^{-1}$.

Keyword: Agroclimate suitability, rain fall, soilwater content, radiation, growth stages,

Abstract

ABSTRAK Kesesuaian agroklimat merupakan bagian dari potensi sumber daya lahan yang penilaiannya didasarkan pada hubungan parameter iklim yang dinamis dan runut waktu dengan fase tumbuh dan hasil tanaman kelapa sawit. Penelitian dilakukan di Perkebunan Pasir Mandoge, Marihat, Torgamba and Bekri yang menggambarkan unit lahan dengan produktivitas tinggi sampai rendah. Dalam penelitian ini dikembangkan suatu metoda penilaian kesesuaian agroklimat didasarkan pada hubungan radiasi surya, curah hujan, dan lengas tanah dengan fase tumbuh tanaman kelapa sawit. Berdasar metoda penetapan kriteria kesesuaian parameter iklim, dikembangkan model dinamik penilaian kesesuaian agroklimat. Keluaran model

[^0]menunjukkan bahwa berdasarkan data iklim tahun 1996, kesesuaian agroklimat kebun Marihat termasuk ($\mathrm{Sl}: \mathrm{rs}_{2}, \mathrm{klt}^{2} \mathrm{ch}_{3}, \mathrm{rn}_{3,5}$), sangat sesuai untuk tanaman kelapa sawit dengan produksi lebih dari 27 ton ha $^{-1}$ tahun ${ }^{-1}$ tandan buah segar. Kelas kesesuaian agroklimat tersebut sesuai dengan data produksi lapang tahun 1996 yaitu 27,7 ton ha ${ }^{-1}$ tahun ${ }^{-1}$ tandan buah segar. Sub kelas kesesuaian agroklimat (rs, klt, ch, rn) menunjukkan bahwa lahan kebun Marihat menunjukkan bahwa siklus produksi tahun 1996 terdapat faktor pembatas iklim yaitu radiasi total disusul oleh lengas tanah, curah hujan dan radiasi neto. Sub-sub kelas kesesuaian agroklimat ($\mathrm{rs}_{2}, \mathrm{klt}_{\mathrm{l}} \mathrm{ch}_{3}, \mathrm{rn}_{3,5}$), menunjukkan bahwa kebun Marihat memiliki radiasi total yang rendah ($357 \mathrm{kal} \mathrm{cm}^{-2}$ hari ${ }^{-1}$) yang merupakan aktor pembatas utama pada fase diferensiasi seks disusul oleh kandungan lengas tanah yang tinggi ($29,45 \mathrm{~mm}$ hari $^{-1}$) pada seluruh fase, curah hujan yang tinggi pada fase aborsi, radiasi neto yang rendah pada fase aborsi dan fase gagal tandan. Hasil pengujian model dengan menggunakan data curah hujan menunjukkan bahwa kesesuaian agroklimat kebun Bekri bersifat dinamis dan kurang sesuai ($\mathrm{S} 4: \mathrm{klt}, \mathrm{rs}$). Kesesuaian agroklimat di kebun kelapa sawit tersebut dapat ditingkatkan dari keadaan kurang sesuai menjadi agak sesuai dengan cara meningkatkan rata-rata kandungan lengas tanah dari 15 mm hari $^{-1}$ menjadi 21 mm hari ${ }^{-1}$.

Kata kunci : Kesesuaian Agroklimat, curah hujan, lengas tanah, radiasi dan fase pertumbuhan

PENDAHULUAN

Berbagai metode telah dalam menentukan kesesuaian lahan antara lain oleh FAO (1976), LECS (1983), atlas format procedures oleh CSR/FAO (1983), Plantgro (CSIRO, 1991) dan metoda ALES. Metoda tesebut secara umum menilai kesesuaian agroklimat berdasar potensi satuan lahan namun belum sepenuhnya menggunakan potensi sumber daya iklim, khususnya hubungan sifat parameter iklim dengan fase pertumbuhan tanaman yang sifatnya dinamis dan runut waktu (time series).

Radiasi total, radiasi netto, curah hujan dan kandungan lengas tanah adalah paremeter iklim yang sangat berpengaruh terhadap pertumbuhan tanaman, sehingga parameter tersebut digunakan dalam penilaian kesesuaian agroklimat. Salah satu kendala dalam mewujudkan penilaian kesesuaian agroklimat dalam skala detil $(1: 250.000)$ karena data parameter iklim yang kurang lengkap. Untuk mengatasi kendala tersebut digunakan model pembangkit data iklim untuk mendapatkan data yang lengkap. Informasi satuan lahan dan iklim digunakan sebagai input untuk menetukan kriteria kesesuaian agroklimat.

Menurut Corley (1978) dan Hartly (1977) tanaman kelapa sawit memiliki 8 fase yang menentukan pertumbuhan dan Sibuea (2001a) menyatakan hanya 5 fase yang berhubungan secara nyata dengan produksi yaitu fase inisiasi, diferensiasi seks, aborsi, antesis, gagal tandan. Penilaian kesesuaian agroklimat ditentukan berdasarkan hubungan parameter iklim dan fase pertumbuhan yang sifatnya dinamik dan runut waktu terhadap tingkat produksi tanaman kelapa sawit. Kriteria tersebut dapat memberi informasi kecenderungan perubahan produksi yang disebabkan oleh perubahan parameter iklim. Model menghasilkan kelas kesesuaian agroklimat yang memberikan informasi potensi produksi suatu lahan, sub kelas memberikan informasi parameter iklim yang menjadi faktor pembatas. Hasil penilaian kesesuaian agroklimat berguna untuk perencanaan pengelolaan kebun atau pemilihan lahan untuk pengembangan tanaman kelapa sawit.

BAHAN DAN METODE

Penelitian pengembangan metoda penilaian kesesuaian agroklimat dilakukan dengan menggunakan tanaman kelapa sawit sebagai studi kasus. Menggunakan data iklim, satuan lahan dan data produksi bulanan dalam satu tahun tanaman kelapa sawit dari kebun Marihat, Pasir Mandoge (Sumatra Utara), Torgamba (Riau) dan Bekri (Lampung) yang mewakili tingkat produksi sangat rendah sampai sangat tinggi dengan jenis tanah, bentuk wilayah, tingkat pengelolaan yang relatif sama dan satuan lahan yang berbeda.

Sibuea (2001b) menggunakanmodel pembangkit data iklim berdasarkan data curah hujan harian dan satuan lahan (posisi geografis, bentuk lahan, keadaan tanah). Keluaran model yang digunakan adalah radiasi permukaan (Rs), radiasi neto (Rn), Curah hujan (CH) dan kandungan lengas tanah (KLT). Data lain yang digunakan adalah data produksi bulanan dalam satu tahun. Struktur klasifikasi kesesuaian agroklimat disusun berdasar data hasil survai lapang, baku potensi produksi kelapa sawit menurut kelas kesesuaian agroklimat yang dikeluarkan oleh Pusat Penelitian Tanaman Kelapa dan FAO (1983)

Kriteria kesesuaian agroklimat dilakukan dengan mencari kurva hubungan jumlah skor harian dari seluruh parameter iklim dan fase pertumbuhan. Nilai skor diperoleh dari hasil mathcing antara parameter iklim harian dengan kriteria kesesuaian parameter ikim yang telah lebih dahulu diberi bobot secara numerik. Penetapan kriteria disusun dengan merangkai kriteria kesesuaian agroklimat sampai penetapan kelas, sub kelas dan sub-sub kelas. Model terdiri dari 4 modul sistem, yaitu (1) sistem data parameter iklim dari setiap satuan lahan, (2) data base tanaman, (3) data base lahan, dan (4) modul sistem pengolahan data yang merupakan urutan algoritma dalam sitiap tahapan proses skoring (matching).

Peta kesesuaian agroklimat disusun dengan cara memetakan hasil penilaian kesesuaian lahan berdasar hubungan keadaan parameter iklim dengan fase-fase pertumbuhan dan hasil tanaman. Peta tersebut disusun dengan menggunakan peta satuan lahan skala $1: 250.000$ sebagai peta dasar melalui sistim informasi geografis (SIG).

HASIL DAN PEMBAHASAN

Struktur Kesesuaian Agroklimat

Dari hasil survai pengumpulan data produksi dan iklim yang dilakukan di lokasi penelitian (Tabel lampiran 1) menunjukkan bahwa produksi terendah tanaman berumur 10-14 tahun adalah 9,71 ton ha ${ }^{-1}$ tahun ${ }^{-1}$, produksi tertinggi 31,22 ton ha^{-1} tahun $^{-1}$. Hasil analisis kriteria kesesuaian data produksi yang diperoleh dari lapangan menunjukkan bahwa, toleransi tanaman kelapa sawit terhadap parameter iklim cukup luas sehingga dari segi iklim, secara umum tingkat produksi lahan di Indonesia sangat berbeda. Berdasarkan pertimbangan tersebut struktur klasifikasi kesesuaian lahan untuk tanaman kelapa sawit disusun dengan cara memodifikasi struktur klasifikasi FAO (1983) pada tingkat ordo seperti disajikan dalam Tabel 1. Setiap kelas dibagi menjadi beberapa sub kelas dengan simbol parameter iklim yang menjadi faktor pembatas yang diletakkan setelah simbol kelas. Selanjutnya sub-kelas dibagi menjadi beberapa sub-sub kelas dengan simbol dalam bentuk angka yang menujukkan fase dimana faktor pembatas dalan sub kelas terjadi yang diletakkan setelah simbol sub kelas.

Tabel 1. Kriteria kelas kesesuaian agroklimat berdasar tingkat produksi TBS

Kelas	Tingkat kesesuaian Lahan		Kisaran produksi (ton/ha/thn)	
		Pada umur produksi Maksimum	Rata-rata	
S1	Sangat Tinggi (ST)	$26-31$	27	
S2	Tinggi (T)	$20-25$	22	
S3	Sedang (S)	$19-15$	17	
S4	Rendah (R)	$14-10$	12	
S5	Sangat rendah SR)	$5-9$	7	

Kriteria Kesesuaian Parameter Iklim dan Agroklimat

Dari kurva respon setiap fase pertumbuhan terhadap kondisi iklim selama fase pertumbuhan yang diperoleh secara empirik sesuai Sibuea (2001a) seperti disajikan dalam Lampiran 4. Kriteria kelas kesesuaian agroklimat disusun dengan menggunakan jumlah skor yang diperoleh dari hasil matching parameter iklim dalam seluruh fase pertumbuhan dengan kriteria kesesuaian iklim. Selanjutnya berdasar hubungan jumlah skor tiap parameter iklim dengan tingkat produksi melalui perhitungan secara statistik dilakukan pengelompok sehingga diperoleh kriteria kelas kesesuaian agroklimat dan produksi dari tingkat sangat sesuai sampai sangat kurang sesuai (Tabel 2).

Tabel 2. Kriteria kelas kesesuaian agroklimat berdasar keadaan agroklimat pada tanaman kelapa sawit

Kriteria kelas kesesuaian agroklimat						
	$\begin{array}{c}\text { Sangat kurang } \\ \text { sesuai }\left(\mathrm{S}_{5}\right)\end{array}$	$\begin{array}{c}\text { Kurang sesuai } \\ \left(\mathrm{S}_{4}\right)\end{array}$	$\begin{array}{c}\text { Agak sesuai } \\ \left(\mathrm{S}_{3}\right)\end{array}$	$\begin{array}{c}\text { Sesuai } \\ \left(\mathrm{S}_{2}\right)\end{array}$	$\begin{array}{c}\text { Sangat } \\ \text { sesuai }\left(\mathrm{S}_{1}\right)\end{array}$	
$\begin{array}{l}\text { Jumlah skor } \\ \text { parameter iklim } \\ \text { Produksi TBS } \\ \text { (ton/ha/bln) }\end{array}$	<130000	$130000-140000$				
$9-9$	$9-15$					

15-19\end{array} $$
\begin{array}{c}150000-160000 \\
19-25\end{array}
$$\right)\)

Kriteria sub kelas kesesuaian agroklimat

Sub kelas kesesuaian agroklimat ditetapkan berdasar jumlah skor setiap parameter iklim dalam seluruh fase pertumbuhan Berdasar hubungan jumlah skor dengan tingkat produksi, dilakukan pengelompok dan diperoleh kriteria sub kelas kesesuaian agroklimat dari tingkat sangat sesuai sampai sangat kurang sesuai (Tabel 3).

Tabel 3. Kriteria sub kelas kesesuaian agroklimat berdasar jumlah skor parameter iklim pada tanaman kelap sawit

Kriteria sub kelas kesesuaian agroklimat						
Parameter iklim	Sangat kurang sesuai $\left(\mathrm{S}_{5}\right)$	Kurang sesuai $\left(\mathrm{S}_{4}\right)$	agak sesuai $\left(\mathrm{S}_{3}\right)$	sesuai $\left(\mathrm{S}_{2}\right)$	Sangat sesuai $\left(\mathrm{S}_{1}\right)$	
Rn	<33324	$33325-35568$	$35569-37812$	$37813-40056$	>40000	
CH	<35787	$35788-37373$	$37374-38959$	$38960-40612$	>40612	
KLT	<34484	$34485-39176$	$39177-43868$	$43869-48560$	>48560	
RS	<30603	$30604-34084$	$34085-37565$	$37566-41046$	>41046	

Kriteria Sub-sub kelas kesesuaian agroklimat

Sub-sub kelas kesesuaian agroklimat ditetapkan berdasar jumlah skor setiap parameter iklm dalam seluruh fase pertumbuhan. Berdasar hubungan jumlah skor dengan produksi secara statistik dilakukan pengelompokan data dan diperoleh kriteria sub-sub kesesuaian parameter iklim pada tiap fase pertumbuhan (Tabel 4).

Tabel 4. Kriteria Sub-sub kelas kesesuaian agroklimat berdasar jumlah skor tiap parameter iklim pada setiap fase pertumbuhan yang dinilai

Parameter iklim	Kriteria sub - sub kelas kesesuaian lahan					
	Fase Pertumbuhan	Sangat kurang sesuai S5	Kurang sesuai (S4)	Agak sesuai (S3)	Sesuai (S2)	Sangat sesuai S1
Rn	IKB	<1900	1900-2100	2100-2199	2200-2300	>2300
	DS	<14100	14100-15100	15100-16000	16000-17000	>17000
	ABR	<13100	13100-13200	13200-13300	13300-13400	>13400
	ANT	<3300	3300-3550	3550-3800	3800-4050	>4050
	GGT	<750	750-850	850-950	950-1050	>1050
CH	IKB	<1250	1250-1350	1350-1450	1450-1550	>1550
	DS	<22200	22200-23350	23350-24500	24500-25650	>25650
	ABR	<9200	9200-9500	9500-9700	$9700-10.000$	>10.000
	ANT	< 1615	1616-1672	1673-1729	$1730-1786$	>1786
	GGT	<1444	1445-1503	1504-1562	1563-1621	>1621
KLT	IKB	<1856	1857-2042	2043-2228	2229-2414	>2414
	DS	<15509	15510-18363	18364-21217	21218-24069	>24069
	ABR	< 13038	13039-14339	14340-15640	15641-16941	>16941
	ANT	<3352	3353-3620	3621-3888	3889-4155	>4155
	GGT	<729	730-813	814-897	899-981	>981
Rs	IKB	<1692	1693-1795	1796-1898	1899-2001	>2001
	DS	<11257	11258-13429	13430-15601	15602-17773	>17773
	ABR	< 13471	13472-14261	14262-15051	15052-15841	>15841
	ANT	<3327	3328-3681	3682-4035	4036-4387	>4387
	GGT	<856	857-919	920-982	983-1045	>1045

Keterangan : IKB: inisiasi kuncup bunga, DS: diferensiasi seks, ABR: aborsi, ANT:antesis, GGT: gagal tandan

Model Penilaian Kesesuaian Agroklimat

Penyusunan model penilaian kesesuaian agroklimat secara computerized tersebut dilakukan berdasar pengetahuan yang menerangkan interaksi empat komponen satuan lahan yang menentukan kesesuaian agroklimat yaitu komponen bentuk dan posisi geografis,sifat tanah, keadaan parameter iklim, sifat tanaman. Interaksi tersebut ditiru dan direpresentasikan dalam suatu sistem dan disusun dalam suatu model seperti disajikan dalam Gambar 1.

Gambar 1. Model penilaian kesesuaian agroklimat untuk tanaman kelapa

Validasi Model Penilaian Kesesuaian Agroklimat

Kelas kesesuaian agroklimat ditetapkan berdasar jumlah skor seluruh nilai parameter dan seluruh fase dalam 12 bulan yaitu 165519 (Lampiran 1). Jumlah tersebut apabila dibandingkan dengan kriteria jumlah skor untuk kelas kesesuaian agroklimat, maka kebun Marihat termasuk dalam kelas S1 (sangat sesuai) dengan tingkat produksi berkisar 25-31 ton/ha/tahun. Pengamatan tahun 1996, menunjukkan produksi TBS adalah 27.7 ton/ha/th.

Sub kelas kesesuaian agroklimat ditetapkan dengan cara menjumlahkan nilai skor yang diperoleh dari hasil penilaian mathcing tiap parameter iklim dalam seluruh fase pertumbuhan yang dinilai (Lampiran 2), Setiap jumlah skor parameter iklim dibandingkan dengan kriteria sub kelas kesesuaian agroklimat sehingga dihasilkan sub kelas kesesuaian parameter iklim (Tabel 5). Penetapan sub kelas kesesuaian agroklimat ditentukan oleh urutan faktor pembatas dimulai dari level terberat sehingga sub kelas kesesuaian agroklimat kebun Marihat termasuk rs,klt.

Tabel 5. Jumlah skor dan hasil penilaian sub kelas keseuaian lahan di kebun Marihat

	Jumlah score parameter iklim				Faktor pembatas sub kelas
	Rn	RS	CH	KLT	年
Jumlah score	46270	36009	41156	44778	rs.klt
Kelas kesesuaian	S1	S3	S1	S2	

Sub sub kelas kesesuaian agroklimat ditetapkan dengan cara menjumlahkan skor yang diperoleh dari hasil penilaian tiap parameter iklim dalam setiap fase pertumbuhan yang dinilai seperti disajikan Tabel 6. Setiap jumlah skor parameter iklim dibandingkan dengan kriteria sub kelas kesesuaian agroklimat sehingga dihasilkan sub-sub kelas kesesuaian agroklimat. Berdasar penetapan sub-sub kelas kesesuaian agroklimat ditentukan oleh urutan faktor pembatas dimulai dari level terberat. Kebun Marihat memiliki kesesuaian agroklimat S1rs-2,klt,ch-3,rn3-5 rs klt yang memberi arti tingkat produksi sangat tinggi dengan faktor pembatas utama adalah limpahan radiasi permukaan pada fase diferensiasi seks dan faktor pembatas kedua adalah kandungan lengas tanah pada semua fase, curah hujan dan radiasi netto pada aborsi. Kurva hubungan curah hujan dengan produksi menunjukkan bahwa peningkatan CH di Marihat telah menyebabkan penurunan produksi.

Tabel 6. Jumlah bobot tiap parameter iklim pada setiap fase tumbuh tanaman kelapa sawit di Marihat

Parameter Iklim	Jumlah bobot fase pertumbuhan					
	IKB	DS	ABR	ANT	GGT	Total bobot
CH						
KLT	2316	26200	9916	1842	1682	41156
Rn	2495	21527	16001	3976	907	44778
RS	2597	19781	15551	7248	1192	46270

Tabel 7. Hasil penilaian sub-sub kelas kesesuaian lahan pada tanaman kelapa sawit di Marihat

Parameter Iklim	Tingkat kesesuaian sub-sub kelas						Sub-sub kelas Kesesuaian agroklimat
	IKB	DS	ABR	ANT	GGT	Rekapitulasi	
CH	S1	S1	S2	S1	S1	S2	
KLT	S2	S2	S2	S2	S2	S2	
Rn	S1	S1	S2	S1	S2	S2	rs-2,klt, ch-3,rn3-5
RS	S1	S4	S2	S2	S2	S4	rs-2,kt, ch-3, rn3-5
Kesesuaian	S2	S4	S2	S2	S2	S4	

Radiasi total (Rs) menjadi faktor penghambat di kebun Marihat adalah akibat CH dan KLT yang tinggi. Apabila KLT yang tinggi tersebut diiringi oleh Rs yang tinggi maka produksi yang diperoleh dapat lebih tinggi. Sinaga (1991) menyatakan bahwa pemberian naungan pada tanaman kelapa sawit, mengurangi radiasi sekitar 50% dapat menyebabkan penurunan produksi sekitar 24%. Hasil analisis regresi yang mewakili produksi sangat rendah sampai sangat tinggi Gambar 2) dapat digunakan sebagai kriteria penduga produksi bulanan. Selanjutnya berdasar persamaan regresi tersebut dapat diduga produksi bulanan dan diperoleh bahwa model produksi bulanan memiliki hubungan yang nyata berhubungan dengan produksi bulanan hasil pengamatan di kebun Marihat dengan nilai koefisien korelasi $\mathrm{r}=0.84$ (Gambar 3). Berdasar uraian tersebut dapat dinyatakan bahwa model dalam penetapan sub kelas dan sub-sub kelas kesesuaian agroklimat telah sesuai dengan gejala yang terjadi di lapangan sehingga model dianggap cukup valid.

Gambar 2. Hubungan jumlah score perameter iklim dengan produksi bulanan di satuan lahan berproduksi sangat rendah sampai sangat tinggi

Gambar 3. Hubungan produksi bulanan hasil pengamatan dengan keluaran model

Penggunaan model untuk perencanaan pengelolaan kebun kelapa sawit

Untuk mendapatkan pola keadaan kesesuaian agroklimat dalam 5 tahun produksi di kebun kelapa sawit Bekri, dilakukan penilaian kesesuaian agroklimat dengan menggunakan data CH , KLT, Rs dan Rn selama 9 tahun yaitu 1987-1995, data KLT, Rs dan Rn adalah hasil bangkitan model dengan menggunakan data CH harian tahun 1987-1995) dan data satuan lahan sebagai masukan model pembangkit data iklim. Dengan menggunakan data CH lapang dan KLT, Rs dan Rn hasil bangkitan model sebagai masukan model kesesuaian agroklimat diperoleh kesesuaian agroklimat kebun Bekri dalam 5 tahun (Tabel 8).

Tabel 8. Dinamika kesesuaian agroklimat kebun Bekri (Lampung)

Keterangan	Tahun produksi				
	1995	1994	1993	1992	1991
Jumlah skor	134498	141697	136756	132578	134498
Kelas Kesesuaian agroklimat	S4	S3	S4	S4	S4
Subkelas Kes. Lahan	klt,rs	klt,rs	kit,rs	klt,rs	klt,rs
Sub-subkelas kes. lahan		$\mathrm{klt}_{2}, \mathrm{rs}_{4}$	$\mathrm{klt}_{2}, \mathrm{rs}_{3,4}$	$\mathrm{klt}_{2}, \mathrm{rs}_{2,4}$	${ }_{\text {klt, rs }}$
Faktor Pembatas Utama	klt	klt	klt	klt	
Fase pembatas utama	2	,	2	2	
Teknik Pengelolaan	irigasi	irigasi	irigasi	irigasi	${ }_{\text {irigasi }}$

Dinamika kesesuaian agroklimat di kebun Bekri menunjukkan bahwa kesesuaian agroklimat kebun Bekri adalah (S4: klt,rs) kecuali pada tahun 1994 termasuk (S3: klt 2 ,rs). Keadaan tersebut menunjukkan bahwa karena kondisi iklim/curah hujan berbeda setiap tahun maka kelas kesesuaian agroklimat pada satuan lahan dapat berbeda atau sifatnya dinamik, memiliki pola. Masukan model menggunakan parameter iklim dari siklus produksi 12 bulan pada tahun 1995. Keluaran model menunjukkan bahwa kesesuaian agroklimat termasuk ($\mathrm{S} 4: \mathrm{klt}_{2,3}, \mathrm{rs}_{2,2}$) yang berarti produksi pada tahun 1996 termasuk kelas kurang sesuai. Faktor pembatas utama yang menyebabkan produksi sangat rendah adalah kandungan lengas tanah rendah dan radiasi yang tinggi pada fase diferensiasi seks dan aborsi. Alternatif pengelolaan adalah irigasi pada fase kandungan lengas tanah rendah atau teknik pengurangan daun untuk meningkatkan efisiensi pemanfaatan radiasi surya.

Apabila pengurangan radiasi dilakukan namun kandungan lengas tanah tetap rendah, maka kriteria kesesuaian parameter iklim menunjukkan bahwa kisaran kandungan lengas yang sangat kurang sesuai adalah kurang dari 15 mm hari ${ }^{-1}$ atau dibawah kapasitas lapang. Menurut Harahap (1998) kandungan lengas tanah pada $\mathrm{pF} 2,5$ berkisar 20 mm . Dengan demikian pengurangan radiasi pada kandungan lengas yang rendah selain diperkirakan justru akan lebih menurunkan produksi juga secara teknis perlakuan tersebut sulit dilakukan. Jika penambahan kandungan lengas tanah dilakukan maka ketersediaan lengas tanah yang diperlukan untuk memenuhi keinginan fase diferensiasi seks dan fase lain tidak berbeda nyata. Kandungan lengas tanah akan mampu mengimbangi radiasi yang tinggi sehingga meningkatkan proses fotosintetis dan pada ahirnya meningkatkan produksi.

Berdasarkan kriteria kesesuaian radiasi total pada fase diferensiasi seks, keadaan yang sangat kurang sesuai terjadi pada keadaan $\mathrm{Rs}>384 \mathrm{kal} \mathrm{cm}^{2}$ hari ${ }^{-1}\left(16 \mathrm{MJ} \mathrm{m}^{-2}\right.$ hari ${ }^{-1}$). Menurut Poeloengan (1987) dan Harahap (1998) pada kondisi lengas tanah optimum, tingginya radiasi tersebut masih berada pada kisaran optimum untuk tanaman kelapa sawit. Dengan demikian radiasi tinggi justru dapat meningkatkan produksi jika diimbangi dengan peningkatan kandungan lengas tanah. Hasil analisis hubungan kandungan lengas tanah pada fase diferensiasi seks dengan produksi menunjukkan bahwa kenaikan kandungan lengas tanah sekitar dari 5 mm hari ${ }^{-1}$ dapat meningkatkan produksi dua kali lipat. Apabila kandungan lengas tanah di kebun Bekri dinaikkan dari rata-rata dari 15 mm menjadi 21 mm maka produksi TBS diperkirakan dapat ditingkatkan dari 0,6 ton ha${ }^{1}$ bulan ${ }^{-1}$ menjadi 1,2 ton ha ${ }^{-1}$ bulan ${ }^{-1}$ atau dari tingkat produksi sangat rendah menjadi sedang. Apabila kandungan lengas tanah dapat dinaikan dari 21 mm hari $^{-1}$ menjadi 27 mm hari $^{-1}$ maka sesuai hasil kajian analisis data, kesesuaian agroklimat kebun Bekri dapat ditingkatkan dari kurang sesuai menjadi sesuai dengan tingkat produksi 2,4 ton ha ${ }^{-1}$ bulan ${ }^{-1 .}$

KESIMPULAN

1. Hasil matching data parameter iklim terhadap kriteria kesesuaian parameter iklim diperoleh kriteria kesesuaian agroklimat yang didasarkan pada tingkat produksi pada tingkat kelas, sub kelas dan sub-sub kelas.
2. Hasil pengujian model kesesuaian agroklimat di kebun Marihat menunjukkan bahwa keluaran model cukup valid atau berkorelasi dengan hasil pengamatan lapang. Satuan lahan kebun Marihat memiliki kesesuaian agroklimat S1rsklt ${ }_{2}$ yang berarti termasuk S1 (sangat sesuai) dengan kisaran tingkat produksi 25-31 ton/ha/tahun, Hasil penilaian pada tingkat sub kelas menunjukkan adanya faktor penghambat dari komponen radiasi permukaan dan kandungan lengas tanah. Selanjutnya hasil penilaian sub-sub kelas menunjukkan bahwa faktor pembatas tersebut terjadi pada fase 2 (diferensiasi seks).
3. Hasil pengujian pendugaan produksi bulanan di kebun Marihat menunjukkan bahwa produksi bulanan model berkorelasi sangat nyata dengan produksi bulanan hasil pengamatan lapang di kebun Marihat dengan nilai koefisien korelasi $r=0.84$
4. Penggunaan hasil penilaian kelas, sub kelas dan sub-sub kelas kesesuaian agroklimat berdasar keadaan agroklimat pada perkebunan kelapa sawit dapat digunakan untuk memonitoring perkembangan produksi, jenis dan kapan parameter iklim menjadi faktor pembatas, sedang untuk perencanan tata guna lahan dapat digunakan dasar pengambilan keputusan pemilihan lahan.

DAFTAR PUSTAKA

Corley, R.H.V. 1978. Inflorescence abortion and sex differentiation, p. 37-55. In R.H.V. Corley, JJ. Hardon, and B.J. Wood (Ed.) Oil Palm Research. Elsevier, Amsterdam.

Hartley, W. 1977. The Oil Palm. Second edition. Tropical Agriculture, Longman, London and New York. 706 p.

Harahap, I.Y. 1998. Model Simulasi Respon Fisiologi Pertumbuhan dan Hasil Tandan Buah Kelapa Sawit (Elaeis guneensis JACQ). Institut Pertanian Bogor. Disertasi Doktor.
Poeloengan, Z. 1987. Contribution to Development of a Land Evaluation System for oil Palm (Elaeisis gueneensis Jacq.) Cultivation in Indonesia. Part 1. Proefschrift voorgedragen tot het bekomen van graad van Doctor in de bodemkunde. Rijksuniversiteit Gent Faculteit Van De Wetenschappen. 186p.

Sinaga, P. 1991. Hubungan Antara Beberapa Unsur Iklim dengan Produksi Kelapa Sawit di Kebun Marihat PTP VII.
Sibuea, L.H. 2001a. Penetapan Kriteria Kesesuaian Parameter Iklim dalam Fase-Fase Tumbuh Tanaman Kelapa Sawit (Elaeis guineensis JACQ). Merupakan bagian dari desertasi S3 Program Pascasarjana Institutu Pertanian Bogor Disajikan dalam seminar nasional tanah dan iklim di Cisarua 31 Oktober 2001.

Sibuea, L.H. 2001b. Pemodelan Sitem Dinamik Pembangkit Data Iklim dalam Unit Satuan Lahan Merupakan Makalah bagian dari desertasi S3 Program Pascasarjana Institut Pertanian Bogor disajikan dalam Seminar bulanan Pusat Penelitian Tanah dan Agroklimat September 2001.

Lampiran 1. Jumlah nilai parameter iklim seluruh fase dari produksi bulanan dalam satu tahun

Tingkat Produksi	Jumlah score parametr iklim					Produksi TBS
	Rn	CH	KLT	Rs	Jumlah	(ton/ha/bulan)
Sangat rendah	32542	41454	32438	28862	135296	9.67
Sedang	31637	41426	41816	29874	144753	19.9
Sangat tinggi	42324	43037	44373	33787	163521	31.22

Lampiran 2. Hasil penjumlahan nilai setiap parameter iklim dan fase produksi bulanan dalam periode satu tahun

Parameter Iklim Rn	Jumlah score pada fase					
	Tingkat produksi	IKB	DS	ABR	ANT	GGT
	Sangat rendah	1906	13651	12725	3188	732
	Sedang	1990	15614	14080	3599	804
	Sangat tinggi	2375	17504	16046	4182	1069
CH	Sangat rendah	1206	216652	9086	1586	1414
	Sedang	1458	25751	9849	1775	1629
	Sangat tinggi	1552	26206	10114	1814	1651
KLT	Sangat rendah	1763	14082	12388	3218	687
	Sedang	2170	20496	14427	4045	928
	Sangat tinggi	2574	25496	17591	4289	1023
RS	Sangat rendah	1640	10171	13076	3150	825
	Sedang	1895	10920	142788	3384	887
	Sangat tinggi	2052	18859	16236	4564	1076

Lampiran 3. Nilai score parameter iklim dalam seluruh fase pada produksi bulanan periode tahun 1996 di Kebun Marihat

Produksi	Jumlah nilai scoring					
	Rn	RS	CH	KLT	Sub Total	Ton/ha/bln
Januari	3552	2981	3439	3808	13780	3.13
Februari	3605	2922	3454	3732	13713	2.34
Maret	3577	2866	3472	3671	13586	1.64
April	3548	2866	3486	3603	13503	1.63
Mei	3569	2871	3487	3556	13483	2.03
Juni	3629	2866	3405	3544	13444	1.56
Juli	3679	2997	3366	3840	13882	2.58
Agustus	3692	2999	3396	3820	13907	2.84
September	3174	3050	3402	3805	13431	2.31
Oktober	3695	3037	3441	3815	13988	3.07
Nopember	3634	3057	3409	3798	13898	2.21
Desember	3561	3014	3410	3731	13716	2.37
Jumlah	$\mathbf{4 6 2 7 0}$	$\mathbf{3 6 0 0 9}$	$\mathbf{4 1 1 5 6}$	$\mathbf{4 4 7 7 8}$	$\mathbf{1 6 4 3 3 1}$	$\mathbf{2 7 . 7 1}$

Lampiran 4. Kritertia kesesuaian parameter iklim dalam fase-fase pertumbuhan tanaman kelapa sawit

Fase inisiasi kuncup bunga					
Parameter iklim	$\begin{aligned} & \text { Sangat kurang } \\ & \text { sesuai } \\ & \left(\mathrm{S}_{5}\right) \end{aligned}$	Kurang sesuai (S_{4})	Agak sesuai $\left(\mathrm{S}_{3}\right)$	Sesuai $\left(\mathrm{S}_{2}\right)$	Sangat sesuai $\left(\mathrm{S}_{1}\right)$
$\mathrm{CH}\left(\mathrm{mm} \mathrm{hari}{ }^{-1}\right)$	<6,0	6-9	9-12	12-15	>15
KLT (mm hari ${ }^{-1}$)	<9	9-18	18-27	27-36	>36
$\mathrm{Rn}\left(\mathrm{kalcm}^{-2} \mathrm{hari}^{-1}\right)$	>250	250-238	238-226	226-214	214-202
$\mathrm{RS}\left(\mathrm{kal} \mathrm{cm}^{-2}\right.$ hari $\left.^{-1}\right)$	> 396	396-383	383-370	$\begin{gathered} <202 \\ 370-356 \end{gathered}$	356-340
Fase diferensiasi seks					
CH (mm hari ${ }^{-1}$)	<4	4-7	7-10	10-13	> 13
KLT ($\mathrm{mm} \mathrm{hari}{ }^{-1}$)	<15	15-21	21-27	27-33	>33
$\mathrm{Rn}\left(\mathrm{kal} \mathrm{cm}{ }^{-2} \mathrm{hari}^{-1}\right)$	>250	250-245	245-236	236-230	230-210
RS(kal cm			<200	200-210	
RS (kal cm	>8	384-378	$\begin{gathered} 379-372 \\ <354 \end{gathered}$	$\begin{aligned} & 373-366 \\ & 354-361 \end{aligned}$	367-360
Fase aborsi					
CH (mm hari ${ }^{-1}$)	<5	5-7	7-9	9-11	
KLT ($\mathrm{mm} \mathrm{hari}{ }^{\text {d }}$)	<7	7-12	12-17	17-23	>23
Rn (kal cm ${ }^{-2}$ haril $^{-1}$)	> 251	251-244	244-236	236-299	<229
$\mathrm{RS}\left(\mathrm{kal} \mathrm{cm}^{-2}\right.$ hari $\left.^{-1}\right)$	>408	408-404	404-400	400-396	
Fase antesis					
$\mathrm{CH}\left(\mathrm{mm}\right.$ hari $\left.^{-1}\right)$	<4	4-7	7-10	10-13	> 13
KLT (mm hari ${ }^{-1}$)	<15	15-21	21-27	27-33	>33
$\mathrm{Rn}\left(\mathrm{kalcm}^{-2}\right.$ hari $\left.^{-1}\right)$	> 255	255-245	245-235	235-225	225 -
				215-205	215
RS (kalcm^{-2} hari $^{-1}$)	> 392	392-380	380-370	370-360	$360-$
			<340	350-340	350
Fase gagal tandan					
$\mathrm{CH}\left(\mathrm{mm}\right.$ hari ${ }^{-1}$)	<5	5-8	8-11	11-14	14-17
			>20	17-20	
KLT (mm hari ${ }^{-1}$)	<12	12-17	17-22	22-27	27-32
			>37	32-37	
$\mathrm{Rn}\left(\mathrm{kal} \mathrm{cm}{ }^{-2} \mathrm{hari}^{-1}\right)$	>300	300-290	290-280	280-270	<270
$\mathrm{RS}\left(\mathrm{kal} \mathrm{cm}^{-2}\right.$ hari $\left.^{-1}\right)$	> 451	451-444	444-437	437-430	<430

Keterangan : Sumber Sibuea (2001), CH : curah hujan, KLT: kandungan lengas tanah, Rn: radiasi neto, Rs: radiasi total

[^0]: Penyerahan naskah: April 2002
 Diterima untuk diterbitkan: Desember 2003

