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 A B S T R A C T 

Sea surface temperature (SST) is identified as one of the essential 

climate/ocean variables. The increased SST levels worldwide is associated with 

global warming which is due to excessive amounts of greenhouse gases being 

released into the atmosphere causing the multi-decadal tendency to warmer 

SST. Moreover, global warming has caused more frequent extreme El Niño 

Southern Oscillation (ENSO) events, which are the most dominant mode in the 

coupled ocean-atmosphere system on an interannual time scale. The objective 

of this research is to calculate the contribution of global warming to the ENSO 

phenomenon.  SST anomalies (SSTA) variability rosed from several mechanisms 

with differing timescales. Therefore, the Empirical Orthogonal Function in this 

study was used to analyze the data of Pacific Ocean sea surface temperature 

anomaly. By using EOF analysis, the pattern in data such as precipitation and 

drought pattern can be obtained. The result of this research showed that the 

most dominant EOF mode reveals the time series pattern of global warming, 

while the second most dominant EOF mode reveals the El Niño Southern 

Oscillation (ENSO). The modes from this EOF method have good performance 

with 95.8% accuracy rate.  

 

 

 
KEYWORDS  

El Niño, empirical orthogonal function, Pacific Ocean, sea surface temperature 

 

INTRODUCTION 

Sea surface temperature (SST) is a fundamental 

variable for understanding, monitoring and predicting 

fluxes of heat (Kumar et al., 2017; Liu et al., 2020), 

momentum and gases at a variety of scales that 

determine complex interactions between the 

atmosphere and ocean (Feng et al., 2018; O’Carroll et 

al., 2019). It is identified as one of the essential ocean 

variables (Farhan et al., 2020; Merchant et al., 2019; 

Miranda Espinosa et al., 2020), which is also an 

important parameter in climate change analysis (Carella 

et al., 2018; Hidayati and Chrisendo, 2010; Sakalli and 

Başusta, 2018). Data from the US National Oceanic and 

Atmospheric Administration (NOAA) showed that the 

average global sea surface temperature, which is the   

temperature of upper few meters of the ocean, has 

increased by approximately 0.13°C per decade over the 

past 100 years (NOAA, 2016). The primary cause of 

increasing SST levels worldwide is global warming, a 

multi-decadal tendency to warmer SST, resulted from 

excessive amounts of greenhouse gases being released 

into the atmosphere (Alawad et al., 2020; Iz, 2018; 

Turkington et al., 2019). Therefore, quantifying global 

trends and variability of SST is important to understand 

changes in the Earth’s climate (Bulgin et al., 2020; 

Estiningtyas et al., 2005). 

El Niño–Southern Oscillation (ENSO) is the most 

dominant mode in the coupled ocean-atmosphere 

system on an interannual time scale (Hidayat and Ando, 

https://doi.org/10.29244/j.agromet.35.1.11-19
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2014; Wang et al., 2017; Yang et al., 2018). According to 

Yeh et al. (2018), ENSO cycle is a scientific term that 

describes the fluctuations in temperature between the 

ocean and atmosphere in the east-central Equatorial 

Pacific (approximately between the International Date 

Line and 120 degrees West). El Niño is referred to as 

the warm phase of ENSO, while La Nina as the cold 

phase of ENSO. Both of the warm (El Niño) and cold (La 

Nina) phases of ENSO exert a large impact on the 

global climate (Dogar et al., 2017; Guo et al., 2017; Lin 

and Qian, 2019; Yang et al., 2018). The intensity change 

of El Niño under increased greenhouse warming is a 

great societal concern (Cai et al., 2018), but researchers 

have a low confidence in the ability to predict how the 

phenomenon of the warm earth affects the El Niño 

phenomenon precisely (NOAA, 2016). 

One study showed that since the late 1970s, 

climate change shifted the El Niño onset location from 

the eastern Pacific to the western Pacific and caused 

more frequent extreme El Niño events (Wang et al., 

2019). Continued warming over the western Pacific 

warm pool promises conditions that will trigger more 

extreme events in the future (Cai et al., 2015; Hermawan, 

2009; Wang et al., 2020). Therefore, this research is 

intended to examine the relationship between those 

two phenomena by analyzing sea surface temperature 

anomaly data in the Pacific Ocean.  

SST anomalies (SSTA) variability arises from 

several mechanisms with differing timescales (Jüling et 

al., 2020; Wu et al., 2016). Interannual SSTA variability 

at a given location tends to be greater for some months 

of the year than the other (Martono, 2016), and this 

annual phasing of interannual variability, in turn, differs 

from place to place (Bulgin et al., 2020; Li et al., 2019; 

Saurral et al., 2018). The Empirical Orthogonal Function 

(EOF) method is used to analyze the dominant 

variability from anomaly data of sea surface 

temperature in the Pacific Ocean. According to Kim et 

al., (2015), the main purpose of this method is to reduce 

a large number of variability in the observed data to as 

few as possible, but without much reducing the spatial 

and temporal variability that can be explained or 

described. 

The purpose of this research is to identify 

patterns that indicate global warming phenomenon, 

characterized by the output of the EOF method in the 

form of time series trend of temporal patterns and 

calculate their contribution to the El Niño phenomenon. 

In addition to providing an overview of the application 

of the EOF method to a spatial and temporal dataset, 

the benefit of this research is also understanding to 

what extent the global warming contributes to the El 

Niño phenomenon. 

 

RESEARCH METHODS 

Data Resources 

The Hadley Center Global Sea Ice and Sea 

Surface Temperature (HadISST) data that was used in 

this research consists of time vector variables with 

dimension of 1,763x1, 180x1 of latitude vector, 360x1 of 

longitude vector, and 360x180x1,763 of sea surface 

temperature data matrix. HadISST data can be 

downloaded on the official website of the Met Office 

Hadley Center. SST data in the study is limited to the 

Pacific Ocean region from January 1870 to November 

2016 or equal to 1,763 months. To extract the data 

stored in NetCDF format, we utilized GNU Octave 

software with NetCDF interface package. After the data 

extraction, the SST anomaly data was formed from the 

HadISST data. We also need Statistics package from 

Octave Programming to deal with “NaN” (not a 

number) data values. 

 

Data Processing 

Empirical Orthogonal Function (EOF) is a method 

that decomposes data into mutually independent 

patterns recorded on data (Shore et al., 2018). EOF 

analysis decomposes the data into two main 

components, including the form 𝜓𝑛(𝑥, 𝑦) representing 

the spatial part, and 𝜏𝑛(𝑡) representing the temporal 

part. The general form of the data matrix 𝑋  can be 

expressed by Equation (1). 

𝑋(𝑥, 𝑦, 𝑡) = ∑ 𝜓𝑛(𝑥, 𝑦)
𝑁
𝑛=1 . 𝜏𝑛(𝑡)   (1) 

Following the analysis steps carried out by 

Hannachi (2004), the initial stage of the EOF analysis 

was converting the anomaly data matrix from three 

dimensions to two dimensions. At this stage, the spatial 

dimensions were merged, where the rows of the new 

anomaly matrix are the combined spatial dimensions, 

and the columns are the temporal dimensions. The new 

matrix of anomaly data for this research has a size of 

29,141 (spatial) x 1,763 (months). The long-term 

average from the data was removed by subtracting 

each of the data by the mean of the matrix.  

The covariance of the matrix data 𝑋 is defined by 

Equation (2). 

𝑀 =
1

𝑛−1
𝑋𝑇𝑋     (2) 

which contains covariance between data grids. Then, by 

using the characteristic equation |𝑍 − 𝜆𝐼| = 0, a total of 

1,763 eigenvalues are obtained along with 1,763 

eigenvectors, which are orthonormal vectors. After the 

covariance matrix along with its eigenvalues and 

eigenvectors were obtained, the next step was to 

determine the EOF mode. As explained by Hannachi 

(2004), the 𝑘th EOF time series pattern is simply the 𝑘th 

eigenvector of the Z covariance matrix, which 

https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://www.metoffice.gov.uk/hadobs/hadisst/data/download.html
https://www.gnu.org/software/octave/index
https://octave.sourceforge.io/netcdf/index.html
https://octave.sourceforge.io/statistics/
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corresponds to the 𝑘th sorted eigenvalues, from large 

to small eigenvalues. As the results, the EOF-1 time 

series is an eigenvector that corresponds to the largest 

eigenvalue, the EOF-2 time series corresponds to the 

second largest eigenvalue and so on for other EOF time 

series. The 𝑖th spatial pattern can be obtained from the 

anomaly data projection on the 𝑖�th EOF time series 

pattern by using the Equation (3). 

𝜓𝑖(𝑠𝑝𝑎𝑡𝑖𝑎𝑙) = 𝑎𝑛𝑜𝑚𝑎𝑙𝑦(𝑠𝑝𝑎𝑡𝑖𝑎𝑙, 𝑡). 𝜏𝑖,𝑘(𝑡) (3) 

where the anomaly is the ocean surface temperature 

anomaly data for the Pacific Ocean, 𝜓𝑖 is 𝑖 th spatial 

pattern of EOF, and 𝜏𝑖,𝑘 is the 𝑘th EOF time series in the 

k-month with 𝑖, 𝑘 = 1, 2, … , 1,763.  

The purpose of the EOF method is to identify a 

linear combination of all variables in data grid, which 

explains the maximum variance. It was used to 

determine direction 𝑎 = (𝑎1, 𝑎2, . . . , 𝑎𝑝)
𝑇 , thus 𝑋𝑎  has 

maximum variability. The variance of 𝑋𝑎 is determined 

by using Equation (4). 

𝑣𝑎𝑟(𝑋𝑎) =
1

𝑛−1
‖𝑋𝑎‖2 =

1

𝑛−1
(𝑋𝑎)𝑇(𝑋𝑎) = 𝑎𝑇𝑀𝑎 (4) 

To generate a confined problem, it is commonly 

required 𝑎  vector to be a unit vector, so that the 

problem form has constraints (Equation 5 and 6). 

𝑚𝑎𝑥𝑎(𝑎
𝑇𝑀𝑎)     (5) 

where 𝑎𝑇𝑎 = 1. The solution to the problem is a simple 

eigenproblem. 

��𝑀𝑎 = 𝜆𝑎     (6) 

By the definition, the covariance matrix 𝑀 in the 

equation is a symmetrical diagonalizable matrix. The 𝑘th 

EOF time series pattern is simply the 𝑘th eigenvector 

from covariance matrix 𝑀, which corresponds to the 𝑘th 

eigenvalue of decreasing ordered eigenvalues. 

Eigenvalue 𝜆𝑘 , which corresponds to the 𝑘th EOF mode, 

gives a measure of the explanatory variance of the 𝑘th 

eigenvector with 𝑘 equals to 1, ..., 𝑁. Variability that can 

be explained in this study will henceforth be called the 

contribution of the 𝑘th EOF mode (EOF-𝑘) to observed 

data variability and generally written in percentages 

(Equation 7). 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛�𝑜𝑓�𝐸𝑂𝐹�𝑘 =
𝜆𝑘

∑ 𝜆𝑘
𝑁
𝑘=1

× 100%  (7) 

The final step was to measure how well the EOF 

mode approaches the observed data. The error is 

calculated using the Mean Squared Error method. 

According to Roberts and Vandenplas (2017), Mean 

Squared Error (MSE) is an estimator that measures the 

average of the squared errors or deviations. MSE is a 

measure of the quality of the estimator whose value is 

always non-negative and the value, which gets closer to 

zero, means the better estimator. Besides being used 

for an unbiased estimator, the MSE value is a variance 

of the estimator as well. The MSE value can be 

estimated using Equation (8). 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌�̂� − 𝑌𝑖)

2𝑛
𝑖=1     (8) 

where the �̂� is a vector of 𝑛 predictors, and 𝑌 is a vector 

of the observed data. 

RESULTS AND DISCUSSIONS 

This research used monthly SST anomaly data of 

the Pacific Ocean region from January 1870 to 

November 2016. The covariance matrix was obtained 

by finding the intertime covariance of the anomaly 

matrix, so it has a size of 1,763x1,763. Therefore, the 

results obtained are 1,763 eigenvalues along with 1,763 

eigenvectors, where all eigenvectors are orthonormal 

vectors.  A total of four EOF modes corresponding to 

the 4 largest eigenvalues were analyzed regarding their 

contribution to all data variability. 

Each EOF mode has contributed to the 

variability of anomaly data, and the total contribution 

of all EOF modes is 100%. EOF-1 mode was able to 

contribute to anomaly data variability for 33.23%, EOF-

2 mode for 17.63%, EOF-3 mode for 4.72%, and EOF-4 

mode with a contribution of 4.06%. Modes are 

independent of each other, so that the EOF-k mode (for 

𝑘 > 1 ) is able to contribute to the variability of 

temperature anomaly data outside the contribution of 

the EOF-1 mode. The cumulative contribution of the 

four most dominant modes is 59.64%.  

Values in the EOF time series pattern represent 

anomaly proportions relative to the average. Negative 

values in the time series indicate that at that time sea 

surface temperatures are below long term average 

from the data, while positive values indicate that sea 

surface temperatures are above the long term average. 

Figure 1 shows the time series plot of the 1st, 2nd, 

3rd, and 4th EOF modes with the largest contribution to 

the variability of Pacific Ocean surface temperature 

anomaly data. EOF-1 mode contributes for 33.23% to 

the data, followed by EOF-2, EOF-3, and EOF-4 which 

contributes consecutively for 17.63%, 4.72%, and 4.06% 

to the data. The figure shows phenomena that occurred 

in the Pacific Ocean. The horizontal axis represents the 

year, while the vertical axis represents the amplitude of 

the proportion of anomalous temperature relative to 

average. The EOF-1 mode time series values tend to 

increase annually. This mode is argued to strongly 

indicate an increased temperature in the Pacific Ocean. 

In other words, the warming in this mode indicates the 

phenomenon of global warming in the Pacific Ocean. 

The values in the EOF spatial pattern have no 

dimensions. The spatial pattern in EOF-1 mode 

corresponds to the time series of EOF-1 mode, meaning  
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Figure 1. Time series plot of Pacific Ocean’s (60oS-60oN and 110oE-70oW) surface temperature anomaly in terms of 

EOF-1, EOF-2, EOF-3, and EOF-4 Mode based on Hadley Center Global Sea Ice and Sea Surface Temperature 

data.  
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that the spatial pattern and time series of EOF-1 mode 

illustrate the same phenomenon, and so do the other 

modes. Spatial patterns describe the coordinates of the 

temperature anomaly variability.  

The EOF-1 spatial pattern plot (see Figure 2) 

corresponds to a time series pattern that indicates the 

phenomenon of global warming. A positive value 

indicates that the coordinates are directly proportional 

to the time series pattern, and the inverse is for a 

negative value. In spatial distribution for EOF-1 mode, 

it is quite clearly shown that the value of positive 

variability is evenly distributed, meaning that the 

phenomenon of global warming occurs evenly 

throughout the Pacific Ocean region. The high positive 

variability values were also observed in the NINO3.4 

region (5oS-5oN and 170oW-120oW) that is shown by 

the red box at several scattered points.  

The EOF-2 spatial pattern plot corresponds to 

the EOF-2 mode time series. Unlike the previous result, 

the EOF-2 spatial pattern shows that there is high 

variability in the NINO3.4 region. This spatial pattern 

indicates El Niño phenomena commonly called El Niño-

Southern Oscillation (ENSO) that occurred from Pacific 

SST analysis. The colour indicates negative values, 

meaning that the NINO3.4 region in the spatial pattern 

has a negative relation with the temporal pattern of the 

EOF-2 mode. Therefore, the NINO3.4 index can be build 

by using temporal pattern EOF-2 mode. The 

comparison between EOF-2 mode temporal pattern 

with the ENSO index will be explained later in this 

research. 

The spatial pattern of both EOF-3 and EOF-4 

modes show high variability in temperature anomaly 

data in the northern area of the Pacific with a negative 

value. On the contrary, in the NINO3.4 region, the 

variability of the spatial pattern is relatively low 

compared to other areas. The contribution of EOF-3 

and EOF-4 mode is also relatively small in comparison 

to the total contribution of EOF-1 and EOF-2 mode. 

Moreover, EOF-3 and EOF-4 mode illustrate different 

phenomenon from El Niño. Therefore, the results from 

EOF-3 and EOF-4 mode was not analyzed further. 

The next step is to see the extent of EOF-1 mode 

which indicates the phenomenon of global warming in 

the NINO3.4 region in influencing the approximation of 

the observed data for the NINO3.4 index using the 

EOF-2 mode which represents the NINO3.4 index. 

NINO3.4 index is one of several ENSO indicators based 

on sea surface temperatures. NINO3.4 index is the 

average of sea surface temperature anomaly in the 

coordinate of 5°N to 5°S and 170°W to 120°W. 

 
Figure 2. Plots of EOF-1, EOF-2, EOF-3, and EOF-4 mode spatial patterns based on Pacific Ocean surface temperature 

anomaly data.
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Figure 3 shows NINO3.4 index approximation 

using EOF-2 mode (top) and both EOF-1 and EOF-2 

combined (bottom) with the NINO3.4 index that is 

shown by 𝑁𝑘 . From Figure 3 (bottom), we argue that the 

visual mode of EOF-1 ( �̂�1,𝑘)� have a considerable 

contribution to the observed data (𝑁𝑘) approximation. 

Combining both modes make the approximation more 

precise in resemblance to the observed data (𝑁𝑘). To 

measure how well the EOF mode approaches the 

observed data, the error is calculated using the Mean 

Squared Error method. The error between the NINO3.4 

index (𝑁𝑘) and EOF-2 mode that is shown in Figure 3 

(top) is 61.62%. Meanwhile, the error between the 

observed data and the sum of EOF-1 and EOF-2 is 4.2%, 

which is much smaller than before.  

From this result, we suggested that the global 

warming signal, which is indicated by EOF-1 mode, has 

a significant contribution to the El Niño phenomenon. 

This is also reinforced by the error calculation of 

NINO3.4 index approximation that has a much smaller 

error when incorporating the global warming signal 

(�̂�1,𝑘) to the approximation. Figure 4 shows a plot of the 

time series of EOF-1 mode (�̂�1,𝑘)  that indicates the 

global warming phenomenon occurred in the NINO3.4 

region. The variability of EOF-1 mode to the NINO3.4 

index from January 1870 to November 2016 is 

calculated based on the difference between the highest 

and the lowest temperature anomaly and is equal to 

1.36℃. This value was generated by multiplying the 

average value of the temperature anomaly in the 

NINO3.4 region in EOF-1 spatial pattern by 0.9, which 

is the range of the value in EOF-1 time series. The 

average value of the temperature anomaly in the 

NINO3.4 region obtained from the spatial pattern is 

15.07℃.  

By using the same concept, the contribution of 

EOF-1 mode (�̂�1) to the NINO3.4 region was calculated 

based on the difference in amplitude of trend from 

January 1870 to November 2016, then multiplied by the 

average value of the NINO3.4 region in EOF-1 mode 

spatial pattern. The difference of amplitude of trend in 

temporal mode is 0.051℃ and the average value of 

EOF-1 mode spatial pattern is 14.85℃, so the result is 

0.76℃.� Therefore, we suggest that EOF-1 mode 

indicated global warming signal which contributes 

0.76℃�to the warming rate of the NINO3.4 region.

 
Figure 3. The plot of the observed data for the NINO3.4 index (𝑁𝑘), the EOF-2 mode which represents the 

NINO3.4 index (�̂�2,𝑘) and the combined EOF-2 mode which represents the NINO3.4 index with the 

EOF-1 mode which indicates the occurrence of global warming (�̂�2,𝑘 + �̂�1,𝑘). 
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Figure 4. Contribution of the EOF-1 mode which indicates the occurrence of global warming in the NINO3.4 

region (�̂�1,𝑘). 

A previous research revealed that the response 

of ENSO thermodynamics and its contribution to ENSO 

amplitude change under global warming have not been 

fully understood (Zheng, 2019). However, there is a 

clear warming trend in the tropical SST temperatures 

that has an effect on the borderline ENSO cases, such 

as in 2016 (Turkington et al., 2019). The prolonged El 

Nino lifetime mainly applied to extreme El Niño events, 

which was caused by earlier outbreak of the westerly 

wind bursts, shallower climatological thermocline 

depth and weaker "discharge" rate of the ENSO warm 

signal in response to global warming (Sun et al., 2017). 

CONCLUSIONS 

The Empirical Orthogonal Function method 

applied to the sea surface temperature anomaly 

dataset of the Pacific Ocean is able to decompose both 

temporal and spatial patterns. It was admitted that the 

two most dominant modes contributed to sea surface 

temperature anomaly data in the Pacific Ocean region 

are EOF-1 and EOF-2 mode, with the contribution of 

each mode consecutively 33.23% and 17.63% to the 

data. 

The most dominant EOF (EOF-1) mode 

indicates the global warming pattern, where the time 

series pattern shows a value that tends to increase, and 

the spatial pattern shows that the global warming 

phenomenon occurs evenly in almost all regions of the 

Pacific Ocean. In the second most dominant EOF mode 

(EOF-2), its spatial pattern describes high variability in 

the El Niño region, thus indicating that this second 

mode describes the pattern of ENSO (El Niño-Southern 

Oscillation). 

By deriving the general form of the EOF 

method obtained for the NINO3.4 region, it is also 

concluded that the EOF mode indicating the 

occurrence of global warming phenomenon directly 

affects the magnitude of the NINO3.4 index, or in other 

words, directly affects the occurrence of the El Niño 

phenomenon. During the observation period in this 

study, the EOF mode contributed to the variability of 

NINO3.4 region temperature for 1.36°C, while the 

NINO3.4 region has a trend of warming rate of 0.76°C. 

By utilizing the two EOF modes from 1,763 modes 

available, we can approximate the observed data of the 

NINO3.4 index with 4.2% error. 
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