Comparison of SARIMA and BES for Forecasting Red Chili Production

  • Titin Agustina Department of Statistics, School of Data Science, Mathematics and Informatics, IPB University, Campus IPB University, Bogor 16680, Indonesia
  • Anwar Fitrianto Department of Statistics, School of Data Science, Mathematics and Informatics, IPB University, Campus IPB University, Bogor 16680, Indonesia
  • Indahwati Indahwati Department of Statistics, School of Data Science, Mathematics and Informatics, IPB University, Campus IPB University, Bogor 16680, Indonesia

Abstract

The goal of this study is to compare the performance of Seasonal Autoregressive Integrated Moving Average (SARIMA) and Bagging Exponential Smoothing (BES) models for forecasting red chili production. The secondary data used in this study came from BPS-Statistics Indonesia and the Ministry of Agriculture. The data include monthly national-level red chili production from January 2013 to December 2021. Data is analyzed using time series approaches such as SARIMA and BES. The performance of both systems was compared, and production forecasts were created using the best model. According to the research findings, for this dataset, the SARIMA (1,1,1)(0,1,1)12 technique outperforms the BES method since it has lower MAPE and RMSE values, 7.06 and 95,473, respectively. The best model was then applied to anticipate red chili production from January to December 2022, resulting in a highly accurate MAPE of 5.39.

Keywords: Bagging Exponential Smoothing, red chili production, SARIMA

Downloads

Download data is not yet available.

References

Aprianto E, Rosa HO, Salamiah. 2023. Uji efektivitas ekstrak kulit bawang merah dalam mengendalikan kutu kebul (Bemisia tabaci Gennadius) pada tanaman cabai. Jurnal Proteksi Tanaman Tropika. 6(2): 676–682. https://doi.org/10.20527/jptt.v6i2.1849Aprinando. 2023. Analisis struktur biaya dan risiko usahatani cabai merah di Kecamatan Tegineneng. [Master’s thesis]. Lampung (ID): Universitas Lampung.

Asrof A, Ischak R, Darmawan G. 2017. Peramalan produksi cabai merah di Jawa Barat menggunakan metode singular spectrum analysis (SSA). Statistika. 17(2): 77–87. https://doi.org/10.29313/jstat.v17i2.2839

Bergmeir C, Hyndman RJ, Benitez JM. 2016. Bagging exponential smoothing methods using STL decomposition and Box-Cox transformation. International Journal of Forecasting. 32: 303–312. https://doi.org/10.1016/j.ijforecast.2015.07.002

[BPS] Badan Pusat Statistik. 2023. Statistik Hortikultura 2022, Statistics of Horticulture 2022. Jakarta (ID): BPS.

Chakrabarty S, Islam AKMM, Islam AKMA. 2017. Nutritional Benefits and pharmaceutical potentialities of chili: A review. Fundamental and Applied Agriculture. 2(2): 227–232.

Cleveland RB, Cleveland WS, McRae JE, Terpenning I. 1990. STL: A seasonal-trend decomposition procedure based on loess. Journal of Official Statistics. 6(1): 3–73.

Henra, Johannes E, Haedar N. 2023. Edible coating berbasis pati singkong dengan penambahan ekstrak jahe merah sebagai antijamur untuk memperpanjang umur simpan cabai merah Capsicum annuum L. Bioma: Jurnal Biologi Makassar. 8(2): 39–50.

Hyndman RJ, Athanasopoulos G. 2018. Forecasting: Principles and Practice. 2nd ed. Australia (AU): OTexts. https://doi.org/10.32614/CRAN.package.fpp2

Imtiyaz H, Prasetio BH, Hidayat N. 2017. Sistem pendukung keputusan budidaya tanaman cabai berdasarkan prediksi curah hujan. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. 1(9): 733–738.

[Kementan] Kementerian Pertanian. 2023. Outlook Cabai 2023. Jakarta (ID): Ministry of Agriculture.

Lubis RMF, Situmorang Z, Rosnelly R. 2021. Autoregressive integrated moving average (ARIMA-Box Jenkins) pada peramalan komoditas cabai merah di Indonesia. Jurnal Media Informatika Budidarma. 5(2): 485–494. https://doi.org/10.30865/mib.v5i2.2927

Maulana HA. 2018. Pemodelan deret waktu dan peramalan curah hujan pada dua belas stasiun di Bogor. Jurnal Matematika, Statistika dan Komputasi. 15(1): 50–63. https://doi.org/10.20956/jmsk.v15i1.4424

Montgomery DC, Jennings CL, Kulahci M. 2015. Introduction to Time Series Analysis and Forecasting. 2nd ed. New Jersey (US): John Wiley & Sons.

Mu’tashim ML, Zaidiah A, Yulistiawan BS. 2023. Klasifikasi ketepatan lama studi mahasiswa dengan algoritme random forest dan gradient boosting (Studi kasus fakultas ilmu komputer Universitas Pembangunan Nasional Veteran Jakarta). In Proceedings of the Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya (Senamika). 4(1): 155–166.

Naura A, Riana FD. 2018. Dampak perubahan iklim terhadap produksi dan pendapatan usahatani cabai merah (Kasus di Dusun Sumberbendo, Desa Kucur, Kabupaten Malang). Jurnal Ekonomi Pertanian dan Agribisnis (JEPA). 2(2): 147–158. https://doi.org/10.21776/ub.jepa.2018.002.02.8

Published
2025-03-04
How to Cite
AgustinaT., FitriantoA., & IndahwatiI. (2025). Comparison of SARIMA and BES for Forecasting Red Chili Production. Jurnal Ilmu Pertanian Indonesia, 30(2), 333-339. https://doi.org/10.18343/jipi.30.2.333