Enhancing Survival Rate and Growth of Kopyor Coconut Plantlet Acclimatization Using Biostimulants

  • Muhammad Eko Riyo Bayu Prasetyo Indonesian Oil Palm Research Institute, Medan 20158, Indonesia
  • Masna Maya Sinta Indonesian Oil Palm Research Institute, Medan 20158, Indonesia
  • Imron Riyadi Indonesian Oil Palm Research Institute, Medan 20158, Indonesia
  • Happy Widiastuti Indonesian Oil Palm Research Institute, Medan 20158, Indonesia

Abstract

In vitro embryo cultivation is the principal method for reproducing the kopyor coconut, an indigenous Indonesian species. Acclimatization is a critical step in this approach. The purpose of this study was to improve the survival and development rate of kopyor coconut seedlings grown in vitro during the acclimatization phase by using biological, organic, and mixed organic-biological biostimulants. This study employed a completely randomized block design that comprised the inclusion of biological, organic, and mixed biological-organic biostimulants, with no biostimulant as a control. The biological stimulant employed in this study was arbuscular mycorrhizal fungus (AMF), while the organic biostimulant was seaweed extract. Each treatment had 50 plantlets in triplicate. The results demonstrated that the treatment of biological and organic biostimulants increased plantlet survival rates during acclimatization, beginning 2 months after application and remaining consistent for 4 months. The biological stimulant application produced the highest plantlet survival rate (>94%). Based on how quickly the plantlets transitioned to the next stage, it was discovered that after 2-months incubation, most of the plantlets had already transferred to the second phase of acclimatization (opened tunnel). After 4-months incubation, the biological stimulant treatment produced the most plantlets at the later stage. However, throughout the 4-month acclimation period, more plantlets were transported from the pre-nursery to the main nursery, particularly with the use of organic biostimulants (56-64%).

Keywords: arbuscular mycorrhizal fungi, plantlet, survival rate, seaweed

Downloads

Download data is not yet available.

References

Ahmed M, Ullah H, Attia A, Tisarum R, Cha-um S, Datta A. 2023. Interactive effects of Ascophyllum nodosum seaweed extract and silicon on growth, fruit yield and quality, and water productivity of tomato under water stress. Silicon. 15(5): 2263–2278. https://doi.org/10.1007/s12633-022-02180-x

Alqarawi AA, Hashem A, Abd Allah EF, Alshahrani TS, Huqail AA. 2014. Effect of salinity on moisture content, pigment system, and lipid composition in Ephedra alata Decne. Acta Biologica Hungarica. 65(1): 61–71. https://doi.org/10.1556/ABiol.65.2014.1.6

Anggraeni LW, Pratama AF, Putri PH, Wahyudi. 2022. Effect of biostimulant and silica application on sugarcane (Saccharum officinarum L.) production. IOP Conf. Series: Earth and Environmental Science 974: 012077. https://doi.org/10.1088/1755-1315/974/1/012077

Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L. 2019. Role of Arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Science 10(a): xx-yyy https://doi.org/10.3389/fpls.2019.01068

Bethlenfalvay G, Linderman R. 1992. Mycorrhizae in sustainable agriculture. Madison, Wisconsin (US): ASA Special Publication. https://doi.org/10.2134/asaspecpub54

EL Boukhari ME, Barakate M, Bouhia Y, Lyamlouli K. 2020. Trends in seaweed extract based biostimulants: manufacturing process and beneficial effect on soil-plant systems. Plants. 9(3). doi:10.3390/plants9030359.

Deng Q, Xia H, Lin L, Wang J, Yuan L, Li K, Zhang J, Lv X, Liang D. 2019. SUNRED, a natural extract-based biostimulant, application stimulates anthocyanin production in the skins of grapes. Sci. Rep. 9(1): 2590. https://doi.org/10.1038/s41598-019-39455-0

Dhelika R, F.A N, Bayu M, Kamil A. 2019. Kopyor coconut detection using sound-based dynamic time warping method. J. Ilmu Komput. dan Inf. 1: 25–30. https://doi.org/10.21609/jiki.v12i1.631

Filho JAC, Sobrinho RR, Pascholati SF. 2017. Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. Di dalam: Meena VS, Mishra PK, Bisht JK, Pattanayak A, editor. Agriculturally important microbes for sustainable agriculture. Singapore (SG): Springer Singapore. pp. 129–164. https://doi.org/10.1007/978-981-10-5343-6_5

Fonseca AJ, Tassone GAT, Carneiro MAC, Carvalho GR, Carvalho CHS, Botelho CE. 2020. Roles of arbuscular mycorrhizal fungi on acclimatization of clones of Coffea arabica L. produced by somatic embryogenesis. Ciência e Agrotecnologia. 44: xxx-yyy. https://doi.org/10.1590/1413-7054202044001120

Frioni T, Sabbatini P, Tombesi S, Norrie J, Poni S, Gatti M, Palliotti A. 2018. Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Sci. Hortic. 232: 97–106. https://doi.org/10.1016/j.scienta.2017.12.054

Gadkar V, Rillig MC. 2006. The arbuscular mycorrhizal fungal protein glomalin is a putative homolog of heat shock protein 60. FEMS Microbiol. Lett. 263(1): 93–101. https://doi.org/10.1111/j.1574-6968.2006.00412.x

González-González MF, Ocampo-Alvarez H, Santacruz-Ruvalcaba F, Sánchez-Hernández CV, Casarrubias-Castillo K, Becerril-Espinosa A, Castañeda-Nava JJ, Hernández-Herrera RM. 2020. Physiological, ecological, and biochemical implications in tomato plants of two plant biostimulants: Arbuscular mycorrhizal fungi and seaweed extract. Front. Plant Sci. 11: 93–101. https://doi.org/10.3389/fpls.2020.00999

Illera-Vives M, López-Fabal A, López-Mosquera ME, Ribeiro HM. 2015. Mineralization dynamics in soil fertilized with seaweed-fish waste compost. J. Sci. Food Agric. 95(15): 3047–3054. https://doi.org/10.1002/jsfa.7207

Katarzyna T, Guido L, Silvio G. 2021. Arbuscular mycorrhizal fungi as plant biostimulants. In: White J, Kumar A, Droby SBT-MS for C, editor. Microbiome Stimulants for Crops. Cambridge (UK): Woodhead Publishing. pp. 333–348. https://doi.org/10.1016/B978-0-12-822122-8.00011-X

Khan A, Ding Z, Ishaq M, Khan I, Ahmed AA, Khan AQ, Guo X. 2020. Applications of beneficial plant growth promoting rhizobacteria and mycorrhizae in rhizosphere and plant growth: A review. Int J Agric Biol Eng. 13(5): 199–208. https://doi.org/10.25165/j.ijabe.20201305.5762

Liwu SL, Rindengan B, Pradhana AY, Wungkana J, Pasang P. 2022. Effect of application edible coating on the quality of kopyor coconut meat during storage. IOP Conf. Ser. Earth Environ. Sci. 974(1): 12125. https://doi.org/10.1088/1755-1315/974/1/012125

Marschner H, Dell B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 159(1): 89–102. https://doi.org/10.1007/BF00000098

McArthur DAJ, Knowles NR. 1993. Influence of species of vesicular-arbuscular mycorrhizal fungi and phosphorus nutrition on growth, development, and mineral nutrition of potato (Solanum tuberosum L.). Plant Physiol. 102(3): 771–782. https://doi.org/10.1007/BF00000098

Meding SM, Zasoski RJ. 2008. Hyphal-mediated transfer of nitrate, arsenic, cesium, rubidium, and strontium between arbuscular mycorrhizal forbs and grasses from a California oak woodland. Soil Biol. Biochem. 40(1): 126–134. https://doi.org/10.1016/j.soilbio.2007.07.019

Navarro JM, Pérez-Tornero O, Morte A. 2014. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. J. Plant Physiol. 171(1): 76–85. https://doi.org/10.1016/j.jplph.2013.06.006

Noli ZA, Suwirmen, Aisyah, P Aliyyyanti. 2020. Effect of liquid seaweed extracts as biostimulant on vegetative growth of soybean. IOP Conf. Series: Earth and Environmental Science 759, 012029. https://doi.org/10.1088/1755-1315/759/1/012029

Oueslati O. 2003. Allelopathy in two durum wheat (Triticum durum L.) varieties. Agric. Ecosyst. Environ. 96(1): 161–163. https://doi.org/10.1016/S0167-8809(02)00201-3

Olguín-Hernández AL, Arévalo-Galarza MdL , Cadena-Iñiguez J , Jaén-Contreras D, Peña-Valdivia CB. 2023. Plant height and stem diameter of Solanum quitoense Lamarck improved with applications of AMF and biostimulants. Agriculture. 13: 1420. https://doi.org/10.3390/agriculture13071420

Paterson E, Sim A, Davidson J, Daniell TJ. 2016. Arbuscular mycorrhizal hyphae promote priming of native soil organic matter mineralisation. Plant Soil. 408(1): 243–254. https://doi.org/10.1007/s11104-016-2928-8

Ricardos AM, Adjovi A, Agbodjato NR, Noumavo NA, Marcellin A, Nicodeme C, Kakaï WG, Rivera R, Lamine AAB. 2020. Greenhouse evaluation of the growth of Zea mays L . inoculated by arbuscular mycorrhizal fungi strains in native arbuscules on ferrous soil. J. Agric. Crop Res. 8(3): 55–63. https://doi.org/10.33495/jacr

Rillig MC, Maestre FT, Lamit LJ. 2003. Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes. Soil Biol. Biochem. 35(9): 1257–1260. doi.org/10.1016/S0038-0717(03)00185-8.

Rillig MC, Mummey DL. 2006. Mycorrhizas and soil structure. New Phytol. 171(1): 41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x

Santacruz-García AC, Gomez AT, Senilliani MG, Guzmán AD, Sagadin MB, Ewens M, Frías RS, Coria C, Gómez J, Nazareno MA. 2022. Could the Interaction between arbuscular mycorrhizal fungi and biostimulants improve the plant physiological status of Prosopis alba seedlings? Environ. Sci. Proc. 22(1). https://doi.org/10.3390/IECF2022-13089

Sharda JN, Koide RT. 2010. Exploring the role of root anatomy in P-mediated control of colonization by arbuscular mycorrhizal fungi. Botany. 88:165–173. https://doi.org/10.1139/B09-105

Singh PK. 2012. Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: A review. Agric. Sci. Res. J. 2(March): 119–125.

Sisunandar, Alkhikmah, Husin A, Julianto T, Yuniaty A, Rival A, Adkins SW. 2018. Ex vitro rooting using a mini growth chamber increases root induction and accelerates acclimatization of kopyor coconut (Cocos nucifera L.) embryo culture-derived seedlings. Vitr. Cell. Dev. Biol. - Plant. 54(5): 508–517. https://doi.org/10.1007/s11627-018-9897-y

Spinelli F, Fiori G, Noferini M, Sprocatti M, Costa G. 2010. A novel type of seaweed extract as a natural alternative to the use of iron chelates in strawberry production. Sci. Hortic. (Amsterdam). 125(3): 263–269. https://doi.org/10.1016/j.scienta.2010.03.011

Spinoso-Castillo JL, Moreno-Hernández MD, Mancilla-Álvarez E, Sánchez-Segura L, Sánchez-Páez R, Bello-Bello JJ. 2023. Arbuscular mycorrhizal symbiosis improves ex vitro acclimatization of sugarcane plantlets (Saccharum spp.) under drought stress conditions. Plants. 12(3). https://doi.org/10.3390/plants12030687

Sumaryono, Riyadi I. 2016. Kriteria planlet kelapa kopyor yang siap untuk diaklimatisasi. Menara Perkeb. 84(1): 13–20. https://doi.org/10.22302/iribb.jur.mp.v84i1.203

Tahardi J., Warga-Dalem K. 1982. Kultur embrio kelapa kopyor in vitro. Menara Perkeb. 50(5): 127–130.

Yadav K, Aggarwal A, Singh N. 2013. Arbuscular mycorrhizal fungi (AMF) induced acclimatization, growth enhancement and colchicine content of micropropagated Gloriosa superba L. plantlets. Ind. Crops Prod. 45: 88–93. https://doi.org/10.1016/j.indcrop.2012.12.001

Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH. 2017. Biostimulants in plant science: A global perspective. Front. Plant Sci. 7(January). https://doi.org/10.3389/fpls.2016.02049

Published
2025-03-04
How to Cite
PrasetyoM. E. R. B., Maya SintaM., RiyadiI., & WidiastutiH. (2025). Enhancing Survival Rate and Growth of Kopyor Coconut Plantlet Acclimatization Using Biostimulants. Jurnal Ilmu Pertanian Indonesia, 30(2), 397-405. https://doi.org/10.18343/jipi.30.2.397