Use of Sphingomonas yunannensis to Improve Soil Drought Stress in Chili Plants

  • Andi Febrianti Ramadhani Sri Astuti Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, IPB Campus Darmaga, Bogor 16680, Indonesia
  • Rahayu Widyastuti Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, IPB Campus Darmaga, Bogor 16680, Indonesia
  • Sri Malahayati Yusuf Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, IPB Campus Darmaga, Bogor 16680, Indonesia

Abstract

The availability of water plays an important role in plant growth. However, water availability depends on the climate and irrigation channels; therefore, there is little water available for plants during the dry season. Bacteria found in soil can produce exopolysaccharides to survive under extreme land conditions, namely, during drought conditions. The research objectives were to (1) isolate and select bacteria originating from dry land for use on chili plants and (2) determine the effect of water supply frequency and select soil bacteria on chili plants. The experiment consisted of two stages. (1) Bacterial selection and characteristics, which included exopolysaccharide bacteria selection on specific ATCC No. media. 14; pathogenicity test (hypersensitivity and hemolysis); characterization and biochemical testing including pH, temperature, salinity, oxidation, and catalase; bacterial functional tests (P and K solvents and nitrogen-fixing); and (2) tests of chili plants in the greenhouse. The treatment consisted of two factors: (a) application of selected bacteria, (b) frequency of water application (every 1, 2, 3, and 5 days), and (3) molecular identification of selected bacteria. The results showed that the best growth of chili plants was obtained by treating them with bacteria and watering them every other day. Molecular identification demonstrated that the selected bacteria was Sphingomonas yunannensis, which can grow under environmental conditions affected by drought.

Keywords: exopolysaccharides, drought, Sphingomonas yunannensis, chili plants

Downloads

Download data is not yet available.

References

Alikhani HA, Mohamadi L. 2010. Assessing tolerance of rhizobial lentil symbiosis isolates to salinity and drought in dry land farming conditions. 19th World Congress of Soil Science, Soil Solutions for a Changing World; Brisbane, 1-6 August 2010.

Asaf S, Numan M, Khan AL, Al-Harrasi A. 2020. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Critical Reviews in Biotechnology. 40(2): 138–152. https://doi.org/10.1080/07388551.2019.1709793

[BPS] Badan Pusat Statistik. 2022. Luas penutupan lahan Indonesia di dalam dan di luar kawasan hutan Tahun 2014-2020 menurut kelas (ribu Ha) [internet]. [Accessed on 10 August 2022]. Badan Pusat Statistik (bps.go.id).

Carminati A, Schneider CL, Moradi AB, Zarebanadkouki M, Vetterlein D, Ogel HJ, Hildebrandt A, Weller U, Schüler L, Oswald SE. 2011. How the rhizosphere way favors water availability to roots. Vadose Zone Journal. 10: 988998. https://doi.org/10.2136/vzj2010.0113

Dharmayanti I. 2011. Filogenetika molekuler: metode taksonomi organisme berdasarkan sejarah evolusi. Wartazoa. 21(1): 110.

Djazuli M. 2010. Pigmen Klorofil. Jakarta: Penerbit Erlangga

Donot, Fontana, Baccoua, Schorr-Galindo. 2011. Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Rev Carbohydrate Polym. 87: 951–962. https://doi.org/10.1016/j.carbpol.2011.08.083

Fitri E, Widiantini F, Yulia E, dan, Raya Bandung-Sumedang Km J, Barat J. 2023. Kejadian dan uji hipersensitivitas bakteri yang berasosiasi dengan penyakit busuk batang jagung di Sumbawa Nusa Tenggara Barat. Jurnal Agrikultura. 34(2): 210–217. https://doi.org/10.24198/agrikultura.v34i2.48717

Felania C. 2017. Pengaruh ketersediaan air terhadap pertumbuhan kacang hijau (Phaceolus radiatus). Keterangan rujukan belum lengkap

Gardner FP, Pearce RB, Mitchell RL. 1991. Fisiologi Tanaman Budidaya. Penerjemah: H. Susilo. Jakarta: UI Pr. p 112-113.

Gofar N, Utama DD. 2019. Eksplorasi Bakteri Penghasil Eksopolisakarida dari Rizosfer Kelapa Sawit sebagai Pemantap Agregat Tanah. Keterangan rujukan belum lengkap https://doi.org/10.21082/bp.v21n1.2020.22-28

Habibi I. Elfarisna. 2017. Efisiensi pemberian pupuk organik cair untuk mengurangi penggunaan NPK terhadap tanaman cabai merah besar. Prosiding Seminar Nasional 2017 Fakultas Pertanian UMJ “Pertanian dan Tanaman Herbal Berkelanjutan di Indonesia”. 31 December 2017, Tangerang Selatan, Indonesia. pp 163172.

Harahap N. 2018. Eksplorasi dan karakterisasi bakteri penghasil eksopolisakarida dari tanah di Kalimantan Barat untuk peningkatan agregasi tanah berpasir [thesis]. Bogor: Institut Pertanian Bogor.

Hidayat F, Sembiring Z, Afrida E, Balatif F. 2020. Aplikasi konsorsium bakteri penambat nitrogen dan pelarut fosfat untuk meningkatkan pertumbuhan jagung (Zea mays). Jurnal Tanah dan Sumberdaya Lahan. 7(2): 249254. https://doi.org/10.21776/ub.jtsl.2020.007.2.8

Hillis DM, Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology. 42(2): 182–192. https://doi.org/10.1093/sysbio/42.2.182

Jung B, Hoilat GJ. MacConkey Medium. [Updated 2022 September 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearlsPublishing; 2023 January. [accessed on 10 October 2023] https://www.ncbi.nlm.nih.gov/books/NBK557394/

Kerr A, Gibb K. 1997. Bacteria and phytoplasma as plant parasites. in: Brown JF, Ogle HJ, editor. Plant Pathogens and Plant Disease. Armidale: Australian Plant Pathology Society.

Kloepper JW. 1992. Plant growth promoting rhizobacteria as biological control agents. In: Meeting Jr, editor. Soil Microbial Ecology, Applications in Agricultural and Environmental Management. New York: Marcel Dekker Inc.

Kuczynski J, Stombaugh J, Walters WA, Gonzales A, Caporaso JG, Knight R. 2012. Using QIIME to analyze 16s rRNA gene sequences from microbial communities. Current Protocols in Microbiology. 1(1): xxx-yyy https://doi.org/10.1002/9780471729259.mc01e05s27

Leghari SJ, Wahocho NA, Laghari GM, Laghari AH, Bhabhan GM, Talpur KH, Bhutto TA, Wahocho SA, Lashari AA. 2016. Role of nitrogen for plant growth and development: A review. Advances InEnvironmental Biology. 10(9): 209–218.

Lingga P, Marsono. 2001. Petunjuk Penggunaan Pupuk. Jakarta: Penebar Swadaya.

Maalej, H., Hmidet, N., Boisset, C., Buon, L., Heyraud, A., Nasri, M. 2015. Optimization of exopolysaccharide production from Pseudomonas stutzeri AS22 and examination of its metal-binding abilities. Journal of Applied Microbiology. 118(2): 356–367. https://doi.org/10.1111/jam.12688

Lonthor DW. 2023. DNA barcoding berbasis penanda rbcL pada tumbuhan air di Wilayah Rote Ndao, Pulau Rote, Nusa Tenggara Timur [thesis]. Bogor: Institut Pertanian Bogor.

Luo Y, Wang F, Huang Y, Zhou M, Gao J, Yan T, Sheng H, An L. 2019. Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Frontiers in Microbiology. 10(1221). https://doi.org/10.3389/fmicb.2019.01221

Marantika M, Hiariej A, Sahertian DE. 2021. Kerapatan dan distribusi stomata daun spesies mangrove di Desa Negeri Lama Kota Ambon. Jurnal Ilmu Alam dan Lingkungan. 12(1): 1–6.

Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ, Wade WG. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology. 64(2): 795799. d https://doi.org/10.3390/su13105625

Martinez-Dalmau J, Berbel J, Ordonez-Fernandez R. 2021. Nitrogen fertilization. A Review of the risks associated with the inefficiency of its use and policy responses. Sustainability. 13(5625), 1–15. https://doi.org/doi.org/10.3390/ su13105625

Newell PD, Fricker AD, Roco CA, Chandrangsu P, Merkel SM. 2013. A small-group activity introducing the use and interpretation of BLAST. Journal of Microbiology and Biology Education. 14(2): 238–243. https://doi.org/10.1128/jmbe.v14i2.637

Ozturk S, Aslim B. 2010. Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environmental Science and Pollution Research. 17: 595602. https://doi.org/10.1007/s11356-009-0233-2

Panjaitan FJ, Bachtiar T, Arsyad I, Lele OK, Indriyani W. 2020. Karakterisasi mikroskopis dan uji biokimia bakteri pelarut fosfat (BPF) dari rhizosfer tanaman jagung fase vegetatif. Jurnal Ilmu Pertanian dan Lingkungan. 1(1): 9–17.

Prima SL, Dariah A, Hadjar GD, Penelitian Bioteknologi Perkebunan B. 2008. Peningkatan kemantapan agregat tanah mineral oleh bakteri penghasil eksopolisakarida. Aggregate stability improvement of mineral soil by exopolysaccharide-producing bacteria. Volume ke-76. xxx

Putrie RFW. 2013. Rizobakteria Bacillussp. dan Pseudomonassp. pemacu tumbuh toleran kekeringan dan aplikasinya pada tanaman jagung [thesis]. Bogor: Institut Pertanian Bogor.

Rahmi Y, Darmawi, Abrar M, Jamin F, Fakhrurrazi, Fahrimal Y. 2015. Identifikasi bakteri Staphylococcus aureus pada preputium dan vagina kuda (Equus caballus). Jurnal Medika Veterinaria. 9(2): 154158. https://doi.org/10.21157/j.med.vet..v9i2.3805

Rofiah AI. 2010. Kajian aspek anatomi daun beberapa varietas kedelai (Glycine max L.) pada kondisi cekaman kekeringan . [Undergraduate thesis]. Malang: Jurusan Biologi Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim.

Sapalina F, Noviandi GE, Hidayat F. 2022. Bakteri penambat nitrogen sebagai agen biofertilizer. WARTA Pusat Penelitian Kelapa Sawit. 27(1): 41–50. https://doi.org/10.22302/iopri.war.warta.v27i1.80

Satyaprakash M, Nikitha T, Sadhana B, Reddi EUB, Vani SS. 2017. Phosphorus and phosphate solubilizing bacteria and their role in plant nutrition. International Journal of Current Microbiology and Applied Sciencess. 6(4): 21332144. https://doi.org/10.20546/ijcmas.2017.604.251

Suparman S. 2016. Desain primer pcr secara in silico untuk amplifikasi gen coi pada kupu-kupu Papilio ulysses linnaeus dari Pulau Bacan. Jurnal Pendidikan Matematika IPA. 7(1): 14. https://doi.org/10.26418/jpmipa.v7i1.17341

Sukmadewi DKT, Anas I, Widyastuti R, Cintaresmini A. 2017. Uji fitopatogenitas, hemolisis serta kemampuan mikrob dalam melarutkan fosfat dan kalium. Jurnal Ilmu Tanah dan Lingkungan. 19(2): 68–3. https://doi.org/10.29244/jitl.19.2.68-73

Tallgren AH, Airaksinen U, Von WR, Ojamo H, Kuusisto J, Leisola M. 1999. Exopolysaccharide-producing bacteria from sugar beets. Journal Application Environment Microbiology. 65(2): 862864. https://doi.org/10.1128/AEM.65.2.862-864.1999

Trinayanti.T. 2012. Keanekaragaman dan Potensi Antimikroba pada Bakteri Endofit Rhizosfer Ageratum conyzoides L. Universitas Pendidikan Indonesia..McMillan S. 2007. Promoting Growth with PGPR. The Canadian Organic Grower. Soil Foodweb Canada Ltd. Soil Biology Laboratory and Learning Center.

Twindiko AFS, Wijayanti DP, Ambariyanto. 2013. Genus pseudochromis dan pictichromis. Buletin Oseanografi Marina. 2: 28–36.

Vergara BS. 1976. Bercocok Tanam Padi. Program Nasional PHT Pusat. Jakarta: Departemen Pertanian

Wingender J, Neu TR, Flemming HC.1999. What are Bacterial Extracellular Polymeric Substances? Microbial Extracellular Polymeric Substances: characterization, structure and function. Wingender J, Neu TR, Flemming HC (Eds.). Berlin: Springer-Verlag. pp. 115. https://doi.org/10.1007/978-3-642-60147-7_1

Zhang YQ, Chen YG, Li WJ, Tian XP, Xu LH, Jiang CL. 2005. Sphingomonas yunnanensis sp. nov., a novel Gram-negative bacterium from a contaminated plate. International Journal of Systematic and Evolutionary Microbiology. 55(6): 2361–2364. https://doi.org/10.1099/ijs.0.63697-0

Published
2024-12-09
How to Cite
Ramadhani Sri AstutiA. F., Rahayu Widyastuti, & YusufS. M. (2024). Use of Sphingomonas yunannensis to Improve Soil Drought Stress in Chili Plants. Jurnal Ilmu Pertanian Indonesia, 30(1), 195-203. https://doi.org/10.18343/jipi.30.1.195